
NanOx™: A new multiscale theoretical framework to
predict cell survival in the context of particle therapy

Micaela Cunha, Caterina Monini, Etienne Testa, Michaël Beuve
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Context

Particle therapy
Use of ion beams to treat tumors

⇓
Enhanced biological effectiveness

Kraft 2000

Cell survival
Described by the LQ model:

slope shoulder

α coefficients for V79 cells
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REQUIRES MODELLING

Current models (LEM, MKM) show limitations =⇒ Room for new models
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NanOx™: Principles
Completely statistical theory

Cell survival = 〈S〉 over many configurations of cells and radiation
impacts
Stochastic nature of radiation at multiple scales

Fundamental premise: S = Slocal × Snon−local

Local lethal events Non local
Definition Directly lethal The rest
Scale Nanometric Micrometric
Biological
interpretation

Severe damage to DNA,
membranes, cell organelles

Accumulation of oxidative stress
Sublethal lesions

NanOx I Specific energy z Global events
Radical species production: OH

⇓ ⇓
Nanometric targets Oxidative stress
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NanOx™: Lethal function

Local lethal events
Destruction of a local
target
N local targets in the cell
sensitive volume
Probability of destroying a
target

⇓
Lethal function: f (z)

⇓
Effective lethal function

F (z) = −N × ln(1− f (z))

Parametric representation
Threshold and saturation
Three parameters

F (z) = h ×
[

1 + erf
(z − z0

σ
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Results: α coefficient

α distributions for H, C and Ar ions for V79 cells

H C Ar

Good agreement
– discrepancies lower than uncertainties in experimental data
Overkill effect reproduced
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Results: Cell survival

Cell survival to carbon ions for V79 cells

Good agreement
In particular the
decrease of the
shoulder with LET
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Conclusions and outlook

Conclusions
– New model based on

Local/non-local events

Multiscale statistics → fully
stochastic dose deposition

– New concepts

Non-local events: radical
production

Chemical dose

– First results

Good agreement with V79 cells
experimental data

Outlook
– Further testing

Other cell lines

Mixed fields and SOBP

– Possible improvements

Further optimizing F

Refine approximations

– Contribution to PT

Implementation into a TPS

Coupling with future
nanodosimeters
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Thank you
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Sensitive volume

Postulate 1: Sensitive volume
The total cell survival is characterized by the irradiation effects in two
volumes:

One associated to local events
Another one associated to non-local events

Simplifications
Simplification 2: Targets

Uniformly and randomly distributed in the local events sensitive volume
Cylindrical

Simplification 3: Sensitive volume associated to local events
Confined to the cell nucleus
Cylindrical

Simplification 4: Sensitive volume associated to non-local events
Non-local sensitive volume = Local sensitive volume
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Independent cell survival to local and non-local events

Postulate 2: Independent cell survival to local and non-local events
The probability of cell survival to local events is independent of that to
non-local events. The survival of one cell is thus given by:

S = SL × SNL
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Survival to local events

Postulate 3: Survival to local events
The sensitive volume contains N targets and the inactivation of one of
these targets causes the cell to die.

SL =
N∏

i=1
( 1− f (zi ) )

– f (zi ): probability of inactivation of target i by the specific energy z
= ni , the mean number of lethal events in target i

Number of effective lethal events (ELE)
The number of effective lethal events in a target is set as n∗

i = ln(1− ni ).

SL = e−n∗

where n∗ is the number of ELE in the cell.
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Survival to non-local events

Postulate 4: Survival to non-local events
Non-local events are represented by global events

SNL = SG
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Survival to non-local events

Simplification 5: Chemical effect chosen
The chemical effect is represented by the concentration of the OH• radical
after a time TR from the impact of the radiation. RCE is then

RCE = Gpart
Gref

where Gpart
Gref

is the production yield of OH• for the particle/reference

Postulate 6: Parametric shape of the global survival
SG is represented by a “LQ” shape of the chemical dose:

SG = e−αG Z̃−βG Z̃2

where αG and βG are parameters to be defined for each cell line
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Survival to non-local events
Relative Chemical Efficiency (RCE)

For a level s of oxidative stress:

RCEs = Zref
Zpart

We have chosen X-rays
as the reference radiation

Postulate 5: Chemical dose
SG is a function of the chemical dose Z̃ deposited in the sensitive volume.

Z̃ = RCE× Z
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Coefficient α

Nanox implementation is computationally very time consuming
SL (and n∗) computation depends on simulating many nanometric
targets

⇒ Trick: to compute n∗ from the specific energy in the sensitive volume

Coefficient α

We define a coefficient α for a given radiation type from the expression

n∗ = αZ

makes the link between nanoscopic and microscopic scales
describes the efficiency of a given particle in creating lethal events
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Coefficient α

At typical clinical doses (2 Gy)
Photons: n∗ = αZ
Ions: very heterogeneous energy deposition pattern

n∗
c = αcZc

n∗
p = αpZp

– Zc : specific energy in the sensitive volume from track core events
– Zp: specific energy in the sensitive volume from track penumbra events

Approximation
αp is set as independent of the ion and is approximated by:

αp = αX-rays
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