

Proton Minibeam Radiotherapy:

Dose distribution and cell survival

<u>Matthias Sammer</u>, Christoph Greubel, Stefanie Girst, Judith Reindl, Christian Siebenwirth, Günther Dollinger **UniBw München**

Thomas Schmid, Jan Wilkens, Olga Zlobinskaya,

Dietrich Walsh, Katarina Ilicic

Klinikum rechts der Isar, München

Geneva, 17 February 2016

Tissue sparing, reduced side effects > normal tumor control

60 Gy average dose

60 Gy average dose

broadbeam • minibeam

For more details see Poster #79!

- 3D dose distribution
- Cell survival

Dose distribution

Dose distribution (0 cm)

85 % of area receive ≤ 1% of tumor dose

Universität be München

Beamsize increases due to small angle scatter!

Dose distribution (10cm)

Cell survival*

Minibeams: Entrance \rightarrow more cell survival Tumor \rightarrow same cell killing

Cell survival*

Minibeams: Entrance \rightarrow more cell survival Tumor \rightarrow same cell killing

Hexagonal beam alignment

der Bundeswehr

Universität 🚱 München

Hexagonal minibeam alignment: → Increase beam distance by a factor of 1.144

*calculated with the LQ model ($\alpha = 0.425$; $\beta = 0.048$ from PIDE: <u>http://www.gsi.de/bio-pide</u>)

Summary and Outlook

 Proton minibeams: spatial fractionation → sparing homogeneous tumor dose → control

- Fractionation? → Hypofractionation?
- Tissue sparing in dependency of depth? \rightarrow Experiments
- Technical feasibility?

Summary and Outlook

 Proton minibeams: spatial fractionation → sparing homogeneous tumor dose → control

- Fractionation? → Hypofractionation?
- Tissue sparing in dependency of depth? \rightarrow Experiments
- Technical feasibility?

Thank you for your attention!

Universität be München Spread Out Bragg Peak

- Beam alignment needs to fulfill the σ/d constraint of homogeneity at 10 cm depth
- Protons with maximum energy (148 MeV) scatter the least $\rightarrow \mathrm{key}~\sigma$

So:
$$\sigma = \sqrt{\sigma_0^2 + \sigma_{auf_{148}}^2}$$
 and $\sigma/_{d_q} = 0,508$ bzw.
 $\sigma/_{d_h} = 0,444$

 $\Rightarrow d_q = 3,415 \text{ mm}$ $\Rightarrow d_h = 3,905 \text{ mm} = 1,144 d_q$