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Concept of proton minibeams
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For more details see Poster #79!



• 3D dose distribution

• Cell survival
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Broadbeam vs. minibeam

Scatter and Bragg - Peak data: LAP - CERR, diploma thesis, F. Kamp 4



Dose distribution
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Dose distribution (0 cm)
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Initial beamsize: 

~ 0.5 mm FWHM

Center-to-center distance: ~3.4 mm

85 % of area receive ≤ 1% of tumor dose 



Dose distribution (5 cm)
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Beamsize increases due to small angle scatter!



Dose distribution (10cm)
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𝟎. 𝟗𝟔𝟓 ≤
𝑫

𝑫𝐭𝐮𝐦𝐨𝐫
≤ 𝟏. 𝟎𝟒𝟓* 𝐛𝐞𝐚𝐦𝐬𝐢𝐳𝐞 (𝐢𝐧 𝛔)

𝐛𝐞𝐚𝐦𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐝
= 𝟎. 𝟓

*including the 1% SOBP uncertainty

Homogeneity!!



Cell survival*

9

Minibeams: 

Entrance  more cell survival

Tumor  same cell killing

*calculated with the LQ model (𝛼 = 0.425; 𝛽 = 0.048 from PIDE: http://www.gsi.de/bio-pide)
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Hexagonal beam alignment
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Hexagonal minibeam alignment:

 Increase beam distance by a factor of 1.144 

*calculated with the LQ model (𝛼 = 0.425; 𝛽 = 0.048 from PIDE: http://www.gsi.de/bio-pide)



• Proton minibeams:  spatial fractionation  sparing

homogeneous tumor dose  control

• Fractionation?  Hypofractionation?

• Tissue sparing in dependency of depth?  Experiments 

• Technical feasibility?

Summary and Outlook

11
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Thank you for your attention!
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• Sum of 17 Bragg peaks

• Energy range: 

117 – 148 MeV

• 𝐃𝐒𝐎𝐁𝐏 − 𝐃𝐭𝐮𝐦𝐨𝐫 < 𝟏%

Spread Out Bragg Peak



𝟎, 𝟗𝟕𝟓 ≤
𝑫

𝑫𝐭𝐮𝐦𝐨𝐫
≤ 𝟏, 𝟎35

 
σℎ

𝑑 = 0,444

 
σ𝑞

𝑑 = 0,508

Constraint on homogeneity



• Beam alignment needs to fulfill the  𝝈 𝒅 constraint of

homogeneity at 10 cm depth

• Protons with maximum energy (148 MeV) scatter the least

 key 𝝈

So: 𝝈 = 𝝈𝟎
𝟐 + 𝝈𝒂𝒖𝒇𝟏𝟒𝟖

𝟐 and  
𝝈

𝒅𝒒
= 𝟎, 𝟓𝟎𝟖 bzw. 

 𝝈 𝒅𝒉
= 𝟎, 𝟒𝟒𝟒

 𝒅𝒒 = 𝟑, 𝟒𝟏𝟓 𝐦𝐦

 𝒅𝒉 = 𝟑, 𝟗𝟎𝟓𝐦𝐦 = 𝟏, 𝟏𝟒𝟒 𝒅𝒒

Determination of the distance d


