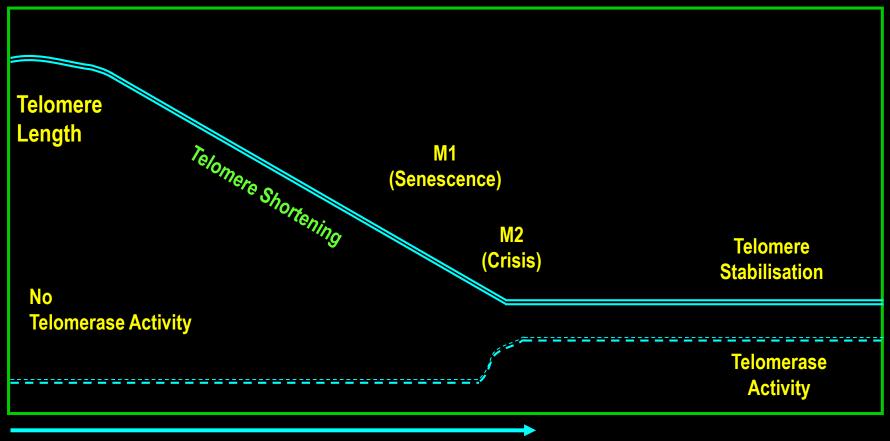

Disruption of Telomere Equilibrium Sensitises Human Cancer Cells to DNA Repair Inhibition and Radiation

M. Prakash HANDE, Ph.D., M.P.H.

Division of Human Health, International Atomic Energy Agency, Vienna, Austria <u>p.hande@iaea.org</u> Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore phsmph@nus.edu.sg

<u>Acknowledgements</u>: Shriram Venkatesan, Ph.D. Swaminathan Sethu, Ph.D.

Absence of Telomerase in Mice


Blasco, Lee, Hande, Samper, Lansdorp, DePinho, Greider <u>1997, *Cell* 91:25-34</u>

Telomere length dynamics in telomerase negative mouse embryonic fibroblasts (Hande *et al.* 1999 *J. Cell Biol*.144: 589-601)

Role of DNA repair factors in telomere maintenance

- Altered telomere homeostasis and metabolism – shortened telomeres (d'Adda di Fagagna, Hande et al. 1999, <u>Nature Genetics</u> and 2001 <u>Current Biology</u>; Hande et al. 1999 <u>Genomics</u>; Hande et al. 2001 <u>Human Molecular Genetics</u>; Hsu, Gilley, Galande, Hande et al. 2000 <u>Genes and Development</u>; McPherson, Hande et al. 2006 <u>Human Molecular Genetics</u>)
- Heightened genomic instability chromosome fusions
- Sensitivity to ionising radiation
 Hande (2004) Cytogenet Genome Res 104:116-122
 Low and Hande (2008) ICCB 2008 Proceedings pp 113-20

Telomere/Telomerase Model of Ageing and Cancer

Telomere shortening with each cell division

Immortalisation

Adapted from Shay and Wright 1999

Telomerase activity in human cancers

Pathology	% Positive (range)
Normal or adjacent to malignancy	15.5 % (0 – 100%)
Pre-invasive cancer	29.5% (0 - 67%)
Malignant	95% (8 – 100%)

Recent estimate : 85-90%

Shay and Wright 2005 Cancer Cell, 7: 1-2

PLos one

Thymoquinone Induces Telomere Shortening, DNA Damage and Apoptosis in Human Glioblastoma Cells

Resham Lal Gurung¹, Shi Ni Lim¹, Aik Kia Khaw¹, Jasmine Fen Fen Soon¹, Kirthan Shenoy¹, Safiyya Mohamed Ali¹, Manikandan Jayapal¹, Swaminathan Sethu¹, Rajamanickam Baskar², M. Prakash Hande¹*

1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 2 Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre, Singapore, Singapore

. PLoS ONE | www.plosone.org

2010 | Volume 5 | Issue 8 | e12124

GENES, CHROMOSOMES & CANCER 51:961-974 (2012)

Genistein Induces Growth Arrest and Suppresses Telomerase Activity in Brain Tumor Cells

Aik Kia Khaw, ¹ Jacklyn Wei Yan Yong, ¹ Guruprasad Kalthur, ^{1,2} and M. Prakash Hande^{1,3*}

¹Department of Physiology, Genome Stability Laboratory, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore

²Department of Obstetrics and Gynaecology, Clinical Embryology, Kasturba Medical College, Manipal University, Manipal 576 104, India ³Tembusu College, National University of Singapore, Singapore 138598, Republic of Singapore

MST-312 Alters Telomere Dynamics, Gene Expression Profiles and Growth in Human Breast Cancer Cells

Resham Lal Gurung^a M. Prakash Hande^{a, b} Shi Ni Lim^a Grace Kah Mun Low^a

J Nutrigenet Nutrigenomics 2014;7:283-298

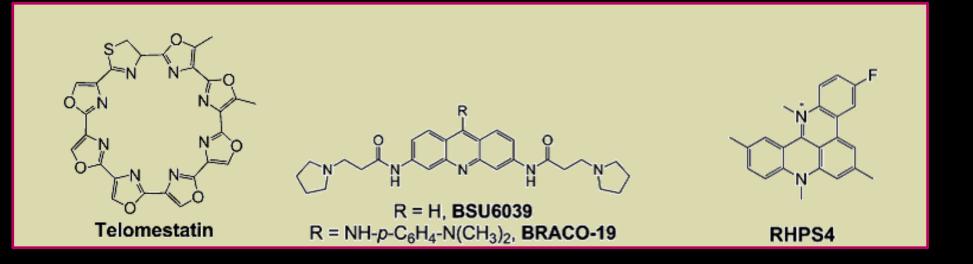
Gurung et al. Molecular Cancer 2014, **13**:232 http://www.molecular-cancer.com/content/13/1/232 MOLECULAR

Open Access

RESEARCH

Targeting DNA-PKcs and telomerase in brain tumour cells

Resham Lal Gurung^{1,3}, Hui Kheng Lim¹, Shriram Venkatesan¹, Phoebe Su Wen Lee¹ and M Prakash Hande^{1,2*}


<u>MST-312:</u> Synthetic telomerase inhibitor* Tea catechin (epigallocatechin gallate, EGCG <u>NU7026</u> – DNA-PKcs inhibitor

Combined inhibition of PARP-1 and Telomerase decreases cell viability in breast cancer cells -Gurung et al. (2014) J. Nutrigenet Nutrigenomics 7: 283 - 298)

G-quadruplex (G4) Structures

- They do exist *in vivo* and in human cells (Biffi et al., 2013)
- Predominantly form at the telomeres due to the availability of long tracts of G-rich DNA, dynamic nature of the telomere and favourable energy stabilisiation (Huppert and Balasubramanian 2005, Todd et al. 2005, Huppert 2015, Lipps and Rhodes 2009)
- About 40% of the promoters have at least one potential G4 (PG4) (Huppert and Balasubramanian 2007)
- Tumour suppressor genes are associated with low occurrence of PG4s, whereas protooncogenes correlate to a high occurrence of PG4s (Eddy and Maizels 2006)

G4 ligands that reached clinical trials

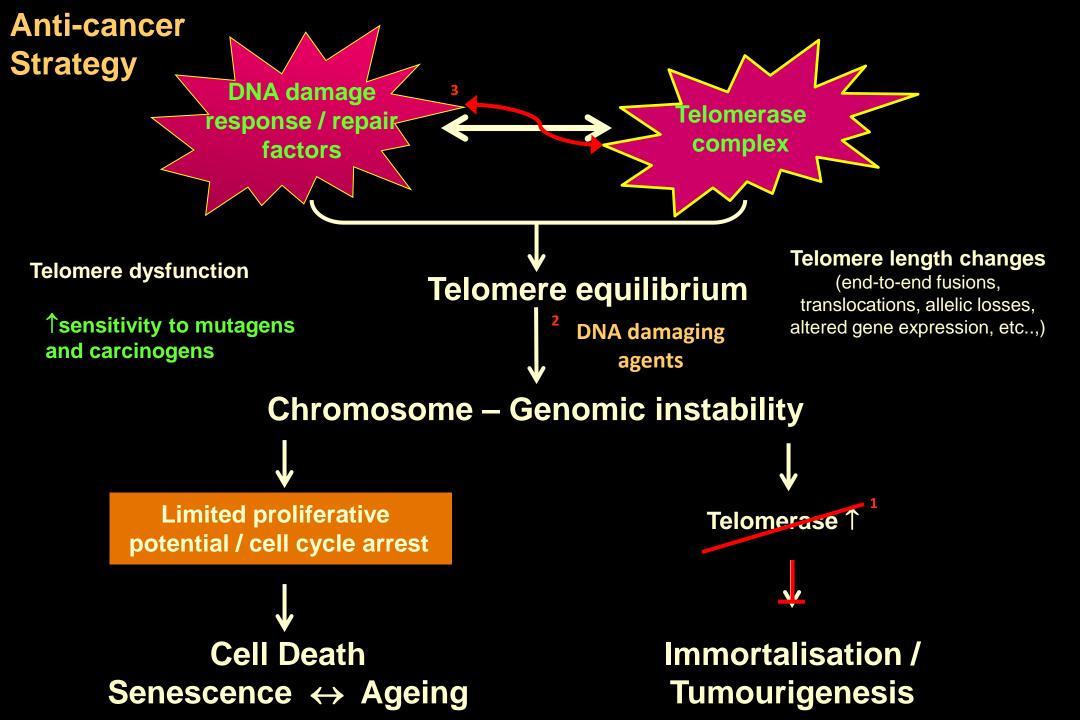
- Problems with mass production (Monchaud et al. 2010)
- Bioavailability issues (Shin-ya et al. 2010)
- Lack of desirable drug properties (Balasubramanian et al. 2011)

- A porphyrin and a synthetic G4 ligands
- Localise to tumour regions preferentially and to quiescent cancer cells too (Carvalho et al. 1999)
- Bona fide G4 ligand with excellent affinity to quadruplexes (Wheelhouse et al. 1999)
- Poor quadruplex to duplex specificity (in vitro) (De Cian et al. 2005)
- Exquisite quadruplex to duplex specificity (molecular crowding) (Martino et al. 2009)

*mesa-5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine Tatratosylate

Telomerase inhibition in brain tumour cells

Glioblastoma and Medulloblastoma cells


Cell line	Brain cancer type	Radioresponse
A172	Glioblastoma multiforme	Sensitive
ONS76	Medulloblastoma	Sensitive
KNS60	Glioblastoma multiforme	Resistant
U251MG(KO)	Glioblastoma multiforme	Resistant

Results

- TMPyP4 reduces telomerase activity and hTERT levels in human brain cancer cells
- Based on the cytotoxicity assessment after 48 hours, 50 μ M of TMPyP4 and 4 Gy of γ -radiation were chosen as the doses for the study.
- Pre-treatment with TMPyP4 potentiates radiation-induced DNA damage
- after 48 hours, 50 μ M of TMPyP4 and 4 Gy of γ –radiation were able to reduce the viability of the cancer cells to a modest extent and hence not too cytotoxic.
- TMPyP4 accentuates radiation-induced cell arrest in glioblastoma cells
- TMPyP4 sensitises glioblastoma cells to radiation-induced cell death

TMPyP4 + 4 Gy: Pretreatment with 50 μ M TMPyP4 for 24 hours, then another 24 hours in TMPyP4 after irradiation

Venkatesan, Sethu and Hande, unpublished

