

Current status of proton therapy in the Netherlands

Johannes (Hans) A. Langendijk

Department of Radiation Oncology University Medical Center Groningen (UMCG) UMC Groningen Comprehensive Cancer Center UMC Groningen Proton Therapy Center (GPTC) GRONINGEN The Netherlands

Uniting physics, biology and medicine for better healthcare

Disclosures

- Department research agreements with:
 - RaySearch
 - Philips
 - IBA
 - Mirada
- Speaker for IBA symposium with honorarium (UMCG Research BV)
- Conference sponsorship by IBA

Milestones

Year	Milestone
2009	Horizon Scanning Report (Health Council)
2010-2012	Advisory Reports (Health Insurance Board)
2013	Planning Directive Proton Therapy (Ministry of Health)
2015	Start construction of first two Dutch Proton therapy centres
2017	First patient treatment planned
2020-2022	Full capacity available

Horizon Scanning Report Health Council

- Formal request of Minister of Health (2007)
- Main purpose:
 - To provide information for political decision making on the introduction of proton therapy in the Netherlands
- Background:
 - Complex infrastructure with special expertise
 - Higher capital outlay and operational costs with higher costs per treatment

Horizon Scanning Report Contents

- Should proton therapy be part of Specific Medical Procedures Act (WBMV)
 - Requires formal governmental license
- Considerations regarding the need for RCT and alternative evidence-based methods
- Overview of indications
- Estimation of the number of patients with an expected benefit from proton therapy

– Which capacity is needed?

Estimation of numbers Example (breast cancer)

Indication group	Annual incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Horizon Scanning Report (Health Council 2009)

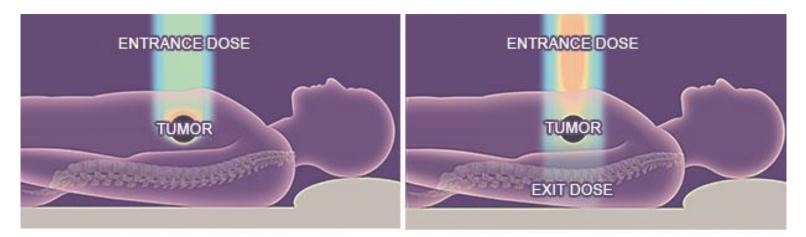
Estimation of numbers Example (breast cancer)

Indication group	Annual incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Horizon Scanning Report (Health Council 2009)

Estimation of numbers Example (breast cancer)


Indication group	Annual incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Horizon Scanning Report Indication grouping

- Standard indications
- Prevention of secondary tumours
- Potential indications
- Model-based indications

Horizon Scanning Report (Health Council 2009)

Standard indications Number of patients

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Standard indications	550	299	84%	252

- Generally accepted indications for proton therapy world wide:
 - Paediatric tumours
 - Base of skull tumours
 - Ocular melanoma

Prevention secondary tumours Number of patients

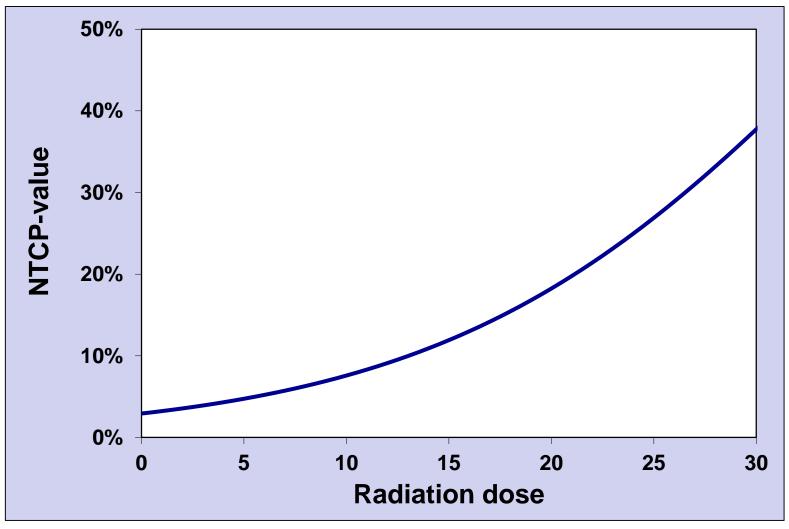
Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Prevention secondary tumours	15,867	11,289	7%	807

- Young patients (18-40 years) with tumours with favourable prognosis:
 - Early stage breast cancer
 - Hodgkin lymphoma
 - Seminoma testis

Potential indications Number of patients

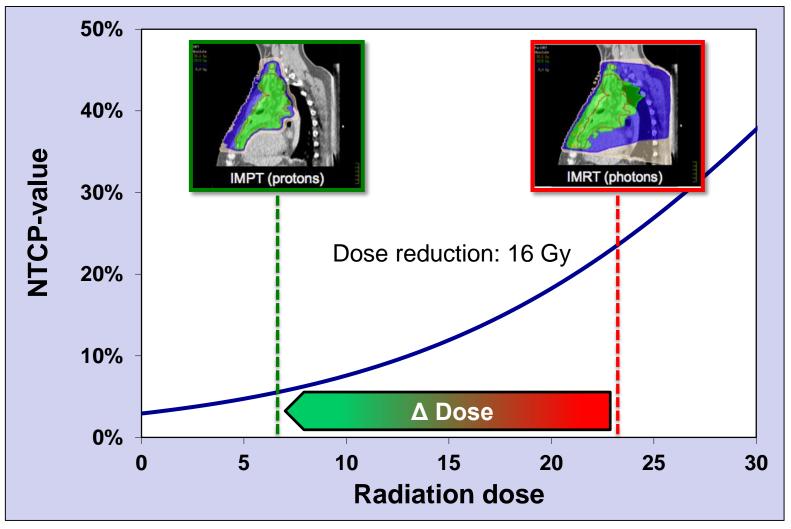
Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Potential indications	21,061	14,471	8%	1,215

- Target dose escalation
 - Individual:
 - when the required dose can not be given without exceeding the threshold dose for critical structures (e.g. spinal cord)
 - Within framework of RCT

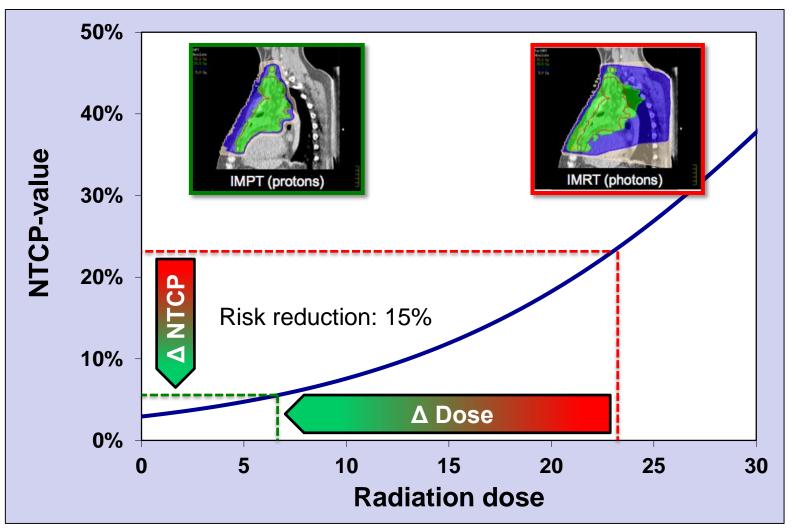

Model-based indications Number of patients

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Model-based indications	52,305	34,578	14%	4,824

- Proton therapy indicated based on expected benefit in terms of clinically relevant risk reduction of radiation-induced side effects
- Model-based selection and validation

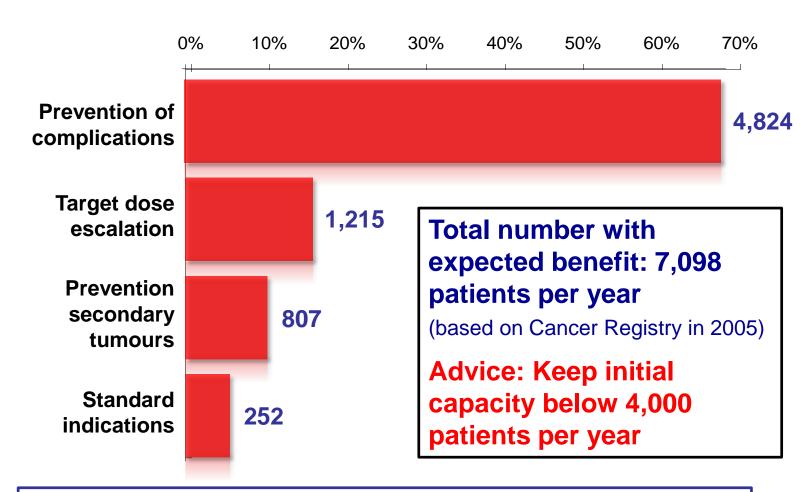


Model-based approach Step 1: NTCP-model



Model-based approach Step 2: Dose comparison photons *vs.* protons

Model-based approach Step 3: Translate ΔDose → ∜NTCP (risk reduction)


Model-based indications

Four major examples

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505
Prostate cancer	8,773	5,264	10%	526
Lung cancer	9,801	5,264	15%	1,118
Head and neck cancer	2,487	2,288	45%	1,069

Horizon Scanning Report (Health Council 2009)

Horizon Scanning Report Report of the Dutch Health Council (2009)

Indications for proton therapy (4 categories)

Milestones

Year	Milestone
2009	Horizon Scanning Report (Health Council)
2009-2012	Advisory Reports (Health Insurance Board)
2013	Planning Directive Proton Therapy (Ministry of Health)
2015	Start construction of first two Dutch Proton therapy centres
2017	First patient treatment planned
2020-2022	Full capacity available

Health Insurance Board Introduction

- Main task:
 - Review scientific evidence to accept a new treatment modality / drug / technology to be part of the Basic Health Insurance Package
 - If YES, all patients will be reimbursed
 - If NO, reimbursement depends on individual Health Insurance Company
- Main problem in 2010:
 - Only level I-II evidence accepted as evidencebased medicine

Health Insurance Board Reports

- Report: 'Proton Therapy' (2009)
 Recognition of the model-based approach
- Report: 'Indications for proton therapy part I: the standard indications' (2010):
 - Positive advice
 - Insured care (252 patients per year)
- Report: 'Indications for proton therapy part II: the model-based indications' (2012)
 - Positive advice
 - 3,218 patients per year
 - requires indication protocols per tumour site

Milestones

Year	Milestone
2009	Horizon Scanning Report (Health Council)
2009-2012	Advisory Reports (Health Insurance Board)
2013	Planning Directive Proton Therapy (Ministry of Health)
2015	Start construction of first two Dutch Proton therapy centres
2017	First patient treatment planned
2020-2022	Full capacity available

Planning Directive PT Ministry of Health

- Based on reports from:
 - Health Council (2009)
 - Health Insurance Board (2009-2012)
 - Consensus with all proton therapy initiatives
- Main issues:
 - Specific Medical Procedures Act (WBMV)
 - Maximum license for 2,200 patients per year
 - 4 centres
 - Optimal geographic distribution
 - Optimal accessibility for patients
 - Re-evaluation after full capacity reached

Proton therapy facilities Geographic distribution

Groningen (GPTC) Treatment rooms: 2 Capacity: 600 patients Vendor: IBA Operational: Q4-2017

Amsterdam (APTC) Treatment rooms: 3 Capacity: 600 patients Vendor: ProNova Operational: Q4-2018

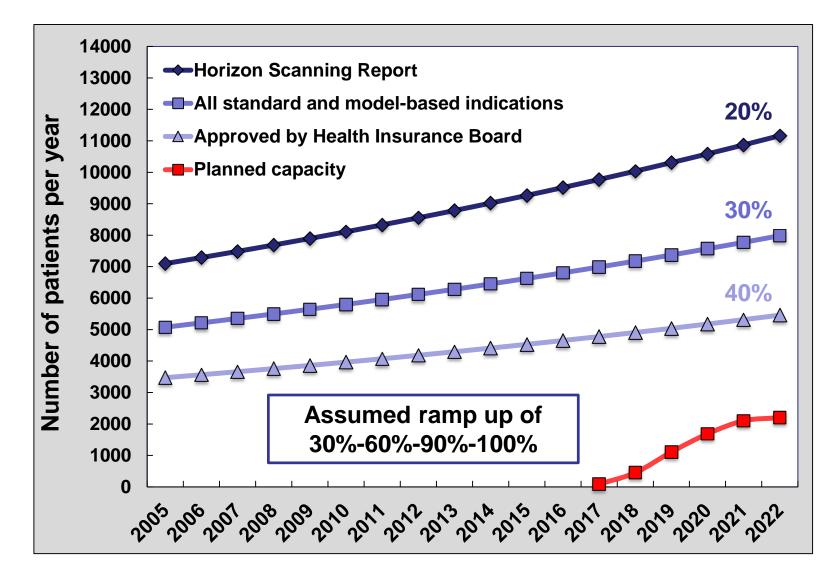
Delft (HollandPTC) Treatment rooms: 3 Capacity: 600 patients Vendor: Varian Operational: Q3-2017

Maastricht (ZonPTC) Treatment rooms: 1 gantry Capacity: 400 patients Vendor: Mevion Operational: Q4-2018

Planning Directive PT Background and license conditions

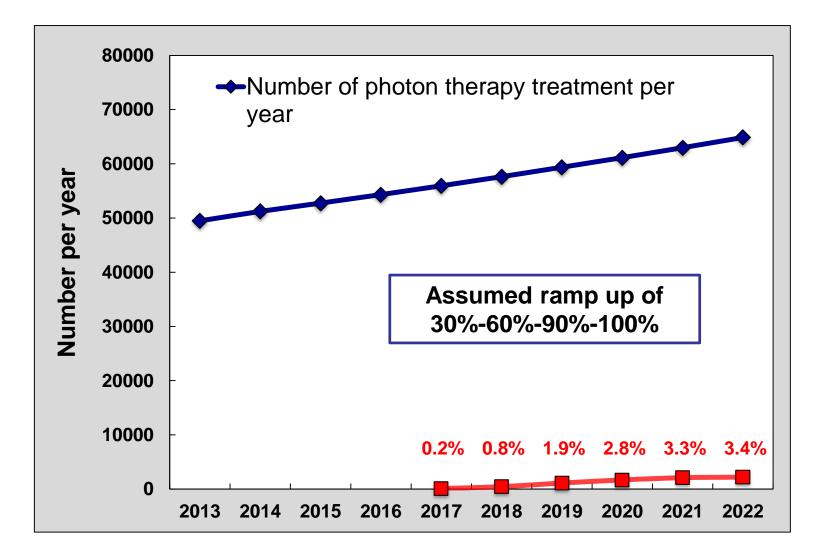
- High accessibility for patients

 optimal geographic distribution
- Realistic business cases regarding maximum capacity:
 - Limited experience with PBS + image-guidance
 + real time adaptation
 - Maximum capacity: 600 patients
- Existing radiotherapy department:
 - Efficient use of existing experience/infrastructure
 - Better integration with existing multidisciplinary pathways


Planning Directive PT Background and license conditions

- Direct involvement of University Medical Centre:
 - Strong clinical scientific track record
 - Research plan
 - Clinical validation of benefits of protons
 - Cost effectiveness
- Uniform national prospective data registration
 - Involvement of 7 university departments → optimal environment for clinical studies with high patient accrual

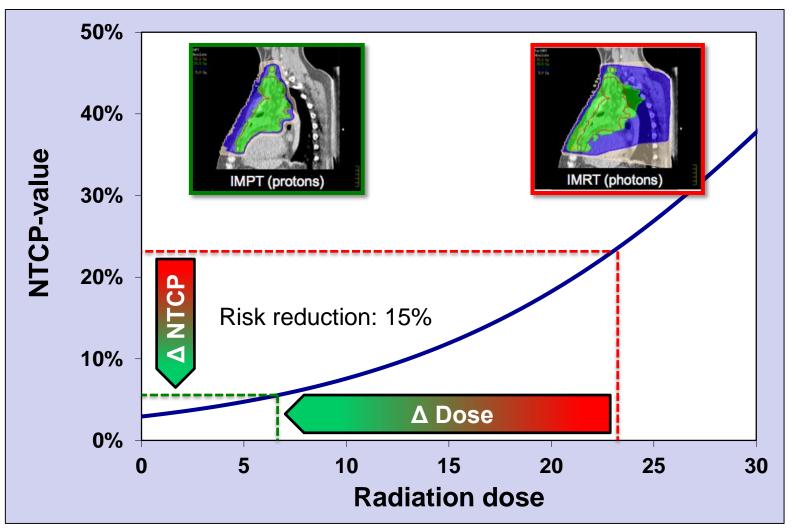
Planned capacity


In relation to expected future indications

Planned capacity

In relation to total number of RT treatments

Next steps



Implementation Organization

- National Proton Therapy Platform
 - All 22 radiotherapy departments represented
 - Main task:
 - Define quality criteria for protons centres
 - Initiate indication protocol development
 - Prospective data registration
 - Define efficient referral workflow
- Expert Group Health Insurance Board
 - All relevant stakeholders
 - Main task:
 - To guide and facilitate clinical introduction of proton therapy

Model-based approach Step 3: Translate ΔDose → ∜NTCP (risk reduction)

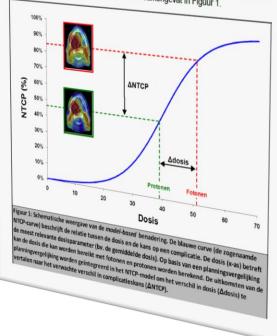
NVRO consensus Thresholds for ΔNTCP

Thresholds for 1 complication

CTCAE Grade	Threshold for ANTCP
1	No indication
II	≥ 10%
111	≥ 5%
IV-V	≥ 2%

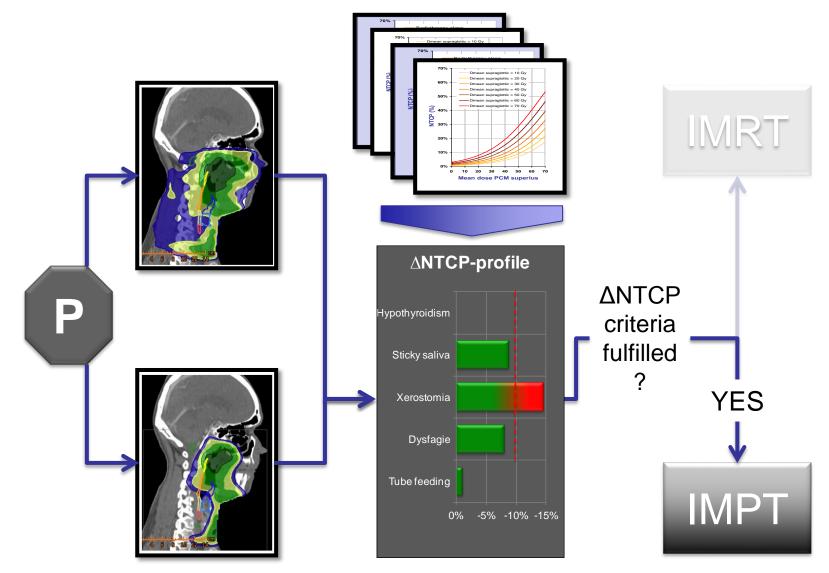
NOTE:

Separate algorithms in case of multiple complications

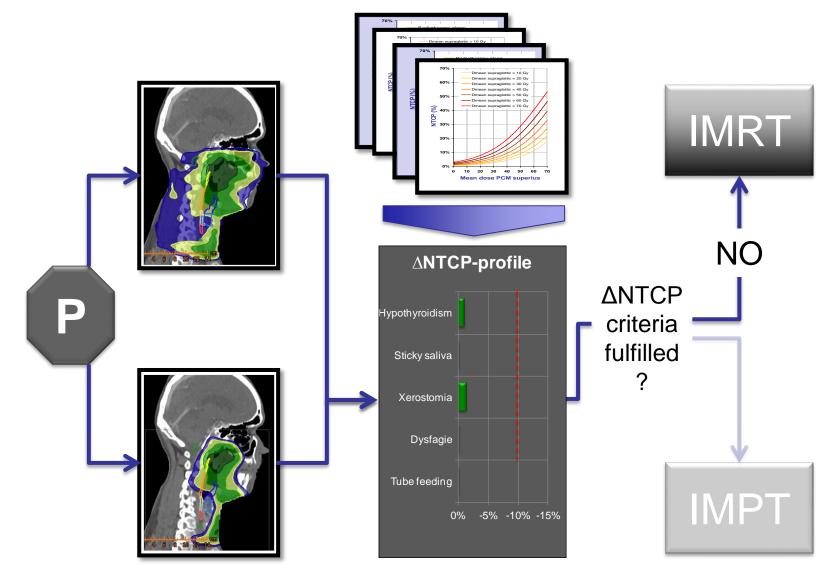

Landelijk Platform Protonen Therapie (LPPT)

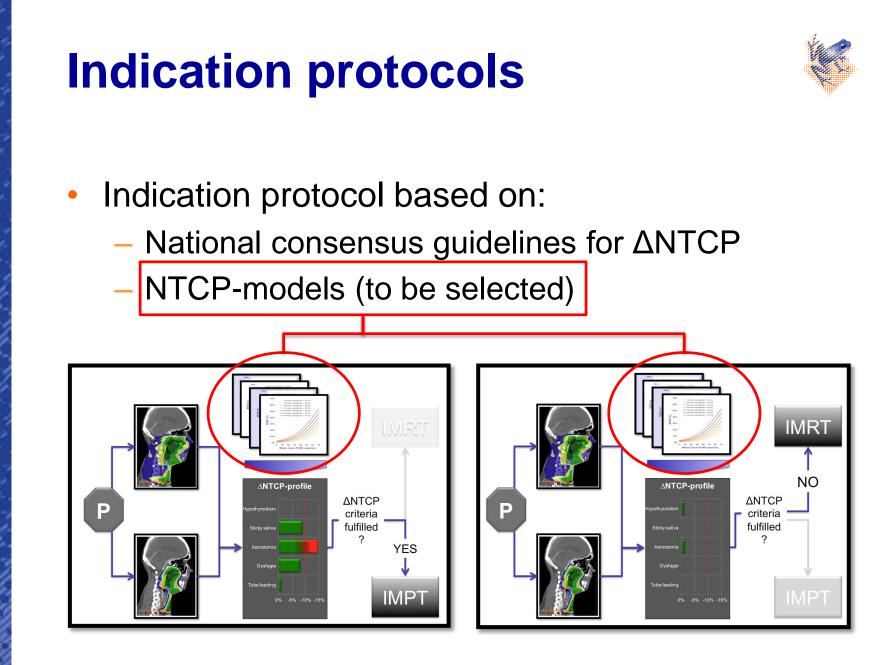
Consensus document voor selectie van patiënten met een model-based indicatie voor protonen therapie Versie: 5 juni 2015

Inleiding


In augustus 2012 heeft het Zorginstituut Nederland (ZiN (voormalig CVZ) geoordeeld dat de zogenaamde model-based indicaties voor protonentherapie voldoen aan de stand van de wetenschap en praktijk [1]. Hiermee maken de model-based indicaties deel uit van het basispakket en vallen zij onder de verzekerde zorg.

Van een model-based indicatie voor protonentherapie is sprake als er op basis van een planningsvergelijking tussen protonen en fotonen een relevant verschil in het risico op een ongewenst neveneffect verwacht wordt (Δ NTCP). Het principe van deze model-based selectiemethode staat kort samengevat in Figuur 1.


Model-based selection Decision support system



Model-based selection Decision support system

Indication protocols



NTCP-model selection (level of evidence)

Level	Description
Level 1a	High quality NTCP-model with evaluation of the model performance in a separate dataset of another institution (external validation)
Level 1b	High quality NTCP-model with evaluation of the model performance in a separate subsequent dataset of the same institution (external validation)
Level 1c	High quality NTCP-model derived from meta-analysis of one or more cohort studies, using resampling (e.g. bootstrapping of cross-validation) techniques to evaluate model performance and overfitting

High quality refers to e.g. study design, number of patients, prospective or retrospective assessment of toxicity, etcetera..

Derived from: Collins, et al. Ann Int Med 2015

Conclusions

Conclusions

- The introduction of proton therapy on a national basis is a long and time-consuming process
- The model-based approach can be used as an alternative for RCT and should be implemented with the framework of a rapid learning health care system
 - Continuous quality improvement
 - Selection of patients
 - Clinical validation

Conclusions

- Main challenges
 - Indication protocols and NTCP-model selection
 - Model-based selection work flow
 - Uniform national prospective data registration

