Clinical validation of the M5L lung Computer-Assisted Detection system E. Lopez Torres^{1,2}, A. Traverso^{3,1}, S. Bagnasco¹, C. Bracco⁴, D. Campanella⁵, M.E. Fantacci^{6,7}, S. Lusso¹, D. Regge⁵, M. Saletta¹, M. Stasi^{4,1}, S. Vallero¹, L. Vassallo⁵, <u>P. Cerello¹</u> - ¹ INFN, Sezione di Torino, Torino, Italy - ² CEADEN, Havana, Cuba. - ³ Physics Department, Polytechnic University of Torino, Torino, Italy. - ⁴ Medical Physics Unit, Candiolo Cancer Institute-FPO, Candiolo, Italy. - ⁵ Radiology Unit, Candiolo Cancer Institute-FPO, Candiolo, Italy. - ⁶ Physics Department, University of Pisa, Pisa, Italy. - ⁷ INFN, Sezione di Pisa, Pisa, Italy ## Lung Cancer - Many lung cancers are detected in late-stage, when the probability of survival is low - Low-dose chest CT screening trials reduce mortality - Screening high risk individuals for lung cancer with low-dose CT scans is now being implemented in the United States and other countries will likely follow ### Automated Detection of Lung Cancer - The detection of pulmonary nodules is a very time-consuming / difficult task for radiologists: - Poor contrast / noisy images - Large number of 'slices' to be analysed Computer Aided Detection (CAD) algorithms for the automated detection of pulmonary nodules - **CAD** increases the performance of radiologists - combining different CAD algorithms increases the sensitivity ## CAD: status and challenges Despite proven benefits, the usage of CAD in clinical practice has not spread (yet) **CAD:** status **Stand-alone** workstations with high SW license cost Dedicated HW + Static Computing resources **Difficulty to share** medical results between radiologists of different medical facilities **CAD:** prospects CAD results available without requiring any HW/SW installation Sharing medical annotations between several medical facilities + Combining several CADs ## M5L on-demand lung CAD service #### three functional blocks Web front-end for CT submission, access to CAD results, review, on-line medical annotations Cloud back-end for image analysis Combination of independent CAD systems for the automated detection of pulmonary nodules ## M5L: large scale validation - Validation on I 043 CT scans from 3 independent datasets, including the full LIDC/IDRI - Results consistent across data-sets - sensitivity of about 80% in the 4-8 FP findings per scan range ### Web front-end: m5l.to.infn.it ### Cloud back-end @ INFN Computing Centre - Infrastructure As A Service: resources allocated according to user requests - SW as a Service: CAD algorithms computed by virtual machines - Virtual Machines (VM) nodes are instantiated in real-time according to the required computing power - no HW/SW requirements to users - combine multiple CADs, leading to an increase of the performance # Clinical Validation / preliminary Collaboration with the Radiology Department of IRCCS Candiolo (Italy) - every day CT scans of oncological patients under-going staging or re-staging are submitted to M5L - three radiologists independently annotate the CTs (first-reader mode) - CAD results are made available to radiologists for review (second-reader mode) only after the first-reading annotation was completed - Goal: dataset of about 1000 scans | | RAD0 | RAD1 | RAD2 | RAD0&RAD1&
RAD2 | RAD0&
CAD | RAD1&
CAD | RAD2&
CAD | RAD0&RAD1&RAD2&
CAD | |------------------------------------|--------|--------|-------------|--------------------|--------------|--------------|--------------|------------------------| | Nodules | 35 | 38 | 19 | 17 | 38 | 41 | 30 | 36 | | FP/SCAN | 3.25 | 4.02 | 3.4 | 3.6 | | | | | | Sensitivity | 90% | 86% | 90% | 89% | 91% | 87% | 94% | 95% | | TP added by
CAD (relative
%) | 3 (9%) | 3 (8%) | 11
(58%) | 9 | - | - | - | - | | FN | 4 | 6 | 2 | 2 | 4 | 6 | 2 | 2 |