

Clinical validation of the M5L lung Computer-Assisted Detection system

E. Lopez Torres^{1,2}, A. Traverso^{3,1}, S. Bagnasco¹, C. Bracco⁴, D. Campanella⁵, M.E. Fantacci^{6,7}, S. Lusso¹, D. Regge⁵, M. Saletta¹, M. Stasi^{4,1}, S. Vallero¹, L. Vassallo⁵, <u>P. Cerello¹</u>

- ¹ INFN, Sezione di Torino, Torino, Italy
- ² CEADEN, Havana, Cuba.
- ³ Physics Department, Polytechnic University of Torino, Torino, Italy.
- ⁴ Medical Physics Unit, Candiolo Cancer Institute-FPO, Candiolo, Italy.
- ⁵ Radiology Unit, Candiolo Cancer Institute-FPO, Candiolo, Italy.
- ⁶ Physics Department, University of Pisa, Pisa, Italy.
- ⁷ INFN, Sezione di Pisa, Pisa, Italy

Lung Cancer

- Many lung cancers are detected in late-stage, when the probability of survival is low
- Low-dose chest CT screening trials reduce mortality
- Screening high risk individuals for lung cancer with low-dose CT scans is now being implemented in the United States and other countries will likely follow

Automated Detection of Lung Cancer

- The detection of pulmonary nodules is a very time-consuming / difficult task for radiologists:
 - Poor contrast / noisy images
 - Large number of 'slices' to be analysed

Computer Aided Detection (CAD) algorithms for the automated detection of pulmonary nodules

- **CAD** increases the performance of radiologists
- combining different CAD algorithms increases the sensitivity

CAD: status and challenges

Despite proven benefits, the usage of CAD in clinical practice has not spread (yet)

CAD: status

Stand-alone workstations with high SW license cost

Dedicated HW + Static Computing resources

Difficulty to share medical results between radiologists of different medical facilities

CAD: prospects

CAD results available without requiring any HW/SW installation

Sharing medical annotations between several medical facilities + Combining several CADs

M5L on-demand lung CAD service

three functional blocks

Web front-end for CT submission, access to CAD results, review, on-line medical annotations

Cloud back-end for image analysis

Combination of independent CAD systems for the automated detection of pulmonary nodules

M5L: large scale validation

- Validation on I 043 CT scans from 3 independent datasets, including the full LIDC/IDRI
- Results consistent across data-sets
- sensitivity of about 80% in the 4-8 FP findings per scan range

Web front-end: m5l.to.infn.it

Cloud back-end @ INFN Computing Centre

- Infrastructure As A Service: resources allocated according to user requests
- SW as a Service: CAD algorithms computed by virtual machines
- Virtual Machines (VM) nodes are instantiated in real-time according to the required computing power

- no HW/SW requirements to users
- combine multiple CADs, leading to an increase of the performance

Clinical Validation / preliminary

Collaboration with the Radiology Department of IRCCS Candiolo (Italy)

- every day CT scans of oncological patients under-going staging or re-staging are submitted to M5L
- three radiologists independently annotate the CTs (first-reader mode)
- CAD results are made available to radiologists for review (second-reader mode) only after the first-reading annotation was completed
- Goal: dataset of about 1000 scans

	RAD0	RAD1	RAD2	RAD0&RAD1& RAD2	RAD0& CAD	RAD1& CAD	RAD2& CAD	RAD0&RAD1&RAD2& CAD
Nodules	35	38	19	17	38	41	30	36
FP/SCAN	3.25	4.02	3.4	3.6				
Sensitivity	90%	86%	90%	89%	91%	87%	94%	95%
TP added by CAD (relative %)	3 (9%)	3 (8%)	11 (58%)	9	-	-	-	-
FN	4	6	2	2	4	6	2	2