Higgs searches from CDF (+ combination with D0) New results : Low mass Higgs New excitement : High mass Higgs Some SUSY Higgs perspective

> Ben Kilminster Fermilab CERN joint EP/PP seminar Sept. 8, 2008

Basic theory of interactions does not provide for massive particles

Basic theory of interactions does not provide for massive particles The experimental problem (1)

Hierarchy of Standard Model particle masses

The experimental problem (2)

Solution: Higgs mechanism

- Potential is symmetric
- Ground state breaks symmetry
- © Cleverly

- W and Z bosons gain masses through degrees of freedom of Higgs field
- Masses are generated for the fermions due to their interaction with this non-zero field
- Theory preserves symmetry (gauge invariance)
- Standard Model calculations no longer fail
- A new particle is predicted: the Higgs boson

Finding the Higgs boson

- Means Higgs field exists
 - Means we confirm our theory for the origin of mass

CDF and DO may flip coins to decide talk order

CDF and DO may flip coins to decide talk order

... but we do use a likelihood to decide where to find the Higgs boson

CDF and DO may flip coins to decide talk order

... but we do use a likelihood to decide where to find the Higgs boson

CDF and DO may flip coins to decide talk order

... but we do use a likelihood to decide where to find the Higgs boson

 Electroweak observables constrain Higgs boson mass within SM

Where is the Higgs ?Direct searches at LEP:Indirect searches : $Z^* \rightarrow ZH$ ~20 measurements from Tevatron, LEP, SLD								
	Date	Direct	Indirect					
		H mass LEP II 95% lower [GeV/c ²]	Top mass [GeV/c²]	δm _W LEP, Tevatron [MeV/c²]	H mass central value, 95% upper [GeV/c²]			
	`98	> 89	173.5 ± 5.2	± 90, 90	74 , < 250			
	`00	> 108	174.3 ± 5.1	± 49, 62	76 , < 188			
	`04	> 114.4	178.2 ± 4.3	± 42, 59	114 , < 260			
	` 06	> 114.4	171.4 ± 2.4	± 33, 59	85 , < 166			
	08	> 114.4	172.4 ± 1.2	± 33, 39	84 , < 154			

Ben Kilminster, CERN seminar '08

Revisiting global electroweak fit

Ø Gfitter group includes

- Indirect electroweak constraints
- LEP direct Higgs searches
- \square Tevatron Higgs searches (only up to previous combo 2.4 fb⁻¹)

Revisiting global electroweak fit

Ø Gfitter group includes

- Indirect electroweak constraints
- LEP direct Higgs searches
- \square Tevatron Higgs searches (only up to previous combo 2.4 fb⁻¹)

SM Higgs at the Tevatron

Main decay modes

SM Higgs at the Tevatron

70

Events produced at CDF in 1 fb⁻¹

Main decay modes

b

b

SM Higgs at the Tevatron

Main decay modes

b

b

What if there is SUSY?

- \odot One \rightarrow Five Higgs bosons
- Are Tevatron SM Higgs searches still useful ?
 - Consider CMSSM fits
 - > Electroweak constraints
 - > Anomalous magnetic moment (g 2)
 - > Cosmology relic neutralino abundance
 - > Rare B decays
 - ▶ MSSM predicts a SM-like Higgs
 □ 113 < m_H < 122 GeV @ 95% region
 ▶ H[±], H⁰, A⁰
 - □ 0.2 TeV < m < 3.6 TeV @ 95% region
 - □ Likely out of reach for Tevatron

JHEP 0704:084,2007

What if there is SUSY?

- \odot One \rightarrow Five Higgs bosons
- Are Tevatron SM Higgs searches still useful ?
 - Consider CMSSM fits
 - > Electroweak constraints
 - > Anomalous magnetic moment (g 2)
 - Cosmology relic neutralino abundance
 - > Rare B decays
 - ▶ MSSM predicts a SM-like Higgs
 □ 113 < m_H < 122 GeV @ 95% region
 - \blacktriangleright H[±], H⁰, A⁰
 - □ 0.2 TeV < m < 3.6 TeV @ 95% region
 - \square Likely out of reach for Tevatron

Low mass SM Higgs searches may be first indication of MSSM
 Though we wouldn't know it from SM until LHC finds the others !

Ben Kilminster, CERN seminar '08

Ben Kilminster, CERN seminar '08

CDF Higgs storyline

How to build an advanced Higgs analysis program

- Start with basic analysis
- Bootstrap special techniques to gain sensitivity
 - □ Improve acceptance
 - > Loosen lepton ID & b-tag requirements
 - > Add backup triggers
 - > Relax kinematic selection
 - But... backgrounds increase & become more difficult to model
 - > Incorporate specialized background rejection techniques
 - > Background modeling checks ! Data must stay well modeled !
 - Separate out events into categories with better S/sqrt(B)
 - High S/sqrt(B) gives best signal sensitivity
 - Low S/sqrt(B) gives best background constraints
 - Use multivariate techniques to distinguish signal events
- Repeat for every Higgs discovery mode
- Combine taking into account uncertainties correlated between correlated backgrounds

$ZH \rightarrow IIbb story$

Smallest expected signal

▷ Small σ_{zH} and BR(Z→II)

But, fully constrained = lower backgrounds

- ▷ Two resonances H→bb and Z→ll
- Baseline analysis
 - ▶ Start with inclusive high P_T lepton trigger (Track + E_T > 18 GeV)

for $m_H < 135$

- ▷ Select two leptons E_T > 18, 10 GeV, >= 2 jets E_T > 20, 15 GeV
- ▶ Fit dijet mass for an excess from $H \rightarrow bb$

|+

b

b

Н

$ZH \rightarrow IIbb story$

Smallest expected signal

▷ Small σ_{zH} and BR(Z→II)

But, fully constrained = lower backgrounds

- ▷ Two resonances H→bb and Z→ll
- Baseline analysis
 - ▶ Start with inclusive high P_T lepton trigger (Track + E_T > 18 GeV)

for $m_H < 135$

- ▷ Select two leptons E_T > 18, 10 GeV, >= 2 jets E_T > 20, 15 GeV
- ▶ Fit dijet mass for an excess from $H \rightarrow bb$

Special techniques

- Relax lepton requirements
 - Second muon does not require muon chamber confirmation
 - \square Second electron does not require track when forward in η
 - New: Dilepton categories from "no-track" trigger : two energy deposits in central or forward region
- Use b-tagging to improve S/sqrt(B)
- Improve dijet mass resolution
- Employ Artificial Neural Network for improved separation

b

b

H

B-tagging in $ZH \rightarrow IIbb$

Ben Kilminster, CERN seminar '08

b

0

B-tagging in $ZH \rightarrow IIbb$

Dilepton categories Tigh" central Z purity Cow" central Z purity

Divide into subsets and win (ZH expectations shown here for 2.4 fb⁻¹)

Category	S	B	S/sqrt(B)
High – 2 Loose b-tags	0.5	30	0.09
High – 1 Tight b-tag	0.9	200	0.06
Low – 2 Loose b-tags	0.1	7	0.04
Low – 1 Tight b-tag	0.1	70	0.01
Sum in quadrature of (scales like 1 / L	0.09 → 0.12		

b

6

Can improve Mjj resolution by correcting jets according to projection onto MET direction

Can improve Mjj resolution by correcting jets according to projection onto MET direction

For events w/ two b-tags, dijet mass resolution improves from 18% to 11%

Multivariate techniques

- Multivariate analysis techniques
 - Used in all CDF Higgs analyses
- Functions which transform multiple inputs into single discriminant tuned for identifying a single process
 - NN = Neural Net
 - ▶ ME = Matrix Element
 - BDT = Boosted Decision Trees

Validation

- Inputs must be modeled correctly
- Correlations of inputs and output discriminant tested vigorously in independent control samples with similar kinematics and backgrounds

Multivariate techniques

Multivariate analysis techniques

- Used in all CDF Higgs analyses
- Functions which transform multiple inputs into single discriminant tuned for identifying a single process
 - NN = Neural Net
 - ME = Matrix Element
 - BDT = Boosted Decision Trees

Validation

- Inputs must be modeled correctly
- Correlations of inputs and output discriminant tested vigorously in independent control samples with similar kinematics and backgrounds

- Pre b-tag NN Output for ZH
 - Same object kinematics
 - Statistics = 30 * tagged sample
 - NN trained on :
 - ▷ Masses of combinations (j1, j2, e/µ)
 - ▷ P_T of combinations
 - Angular separations

 We use a 2D NN to distinguish ZH from tt and Z+jets

0

b

b

H

New "low" purity lepton types from

 We use a 2D NN to distinguish ZH from tt and Z+jets

b

Have also done ME analysis with 2.1 fb⁻¹ In the process of merging the two ...

Ben Kilminster, CERN seminar '08

 We use a 2D NN to distinguish ZH from tt and Z+jets

0

Ben Kilminster, CERN seminar '08

b

b

New "low" purity lepton types from

 We use a 2D NN to distinguish ZH from tt and Z+jets

b

b

WH \rightarrow lvbb: the golden channel for $m_{H} < 135$

Selection (I+MET +>=2jets + >= 1 b-tag)

- \square one lepton, e or μ , P_T > 20 GeV
- MET = Missing transverse energy > 20 GeV
- \square >= 2 jets from bs, E_T > 15 GeV
- \square Require jet to be b-tagged

Lots of Tevatron experience

Same as single top - CDF had 2006 evidence

Similar to golden analysis for studying top quark pairs

□ l + MET + >= 4 jets + b-tag

Basic analysis

- Use central high Pt lepton trigger
- \square Search for resonance in dijet mass

$WH \rightarrow lvbb$

Improving lepton acceptance

Forward (plug) electrons

Plug electron trigger rate is too high since we have little tracking to reject jets

Use plug electron + MET trigger

New: Incomplete muons

Central muon trigger requirements are stringent because trigger rate is high

W*

b

Use jets + MET trigger

Ben Kilminster, CERN seminar '08

$WH \rightarrow Ivbb$ results

Several iterations to optimize NN analysis

Newer parallel effort with matrix elements (from singletop evidence group)

w*

$WH \rightarrow Ivbb$ results

Several iterations to optimize NN analysis

Newer parallel effort with matrix elements (from singletop evidence group)

w*

$WH \rightarrow Ivbb$ results

Several iterations to optimize NN analysis

Ben Kilminster, CERN seminar '08

w*

Newer parallel effort with

$VH \rightarrow MET+jets$

Signature ▷ MET > 50 GeV, >= 2 jets, >= 1 btag Sector Large total signal ▶ 7.3 Higgs events in 2.1 fb^{-1} Baseline analysis Uses MET + multi-jet trigger ▶ Fit of M_{jj} in 2-jet data, >= 1 b-tag Challenge Large QCD background from mismeasured jets Peak in M_{jj} where signal

	D
Process	Evts 2.1 fb ⁻¹ 2 tight b-tags
QCD	80 ± 15
Total Bkg	149 ± 20
ZH Signal	0.8
WH Signal	0.7

b

$VH \rightarrow MET+jets$

Signature MET > 50 GeV, >= 2 jets, >= 1 btag Sector Large total signal ▶ 7.3 Higgs events in 2.1 fb^{-1} Baseline analysis Uses MET + multi-jet trigger ▶ Fit of M_{ii} in 2-jet data, >= 1 b-taq Challenge Large QCD background from mismeasured jets

Peak in M_{jj} where signal

Process	Evts 2.1 fb ⁻¹ 2 tight b-tags
QCD	80 ± 15
Total Bkg	149 ± 20
ZH Signal	0.8
WH Signal	0.7

b

$VH \rightarrow MET+jets$

Substance Using tracking in 2 ways

- Tracks have excellent momentum resolution
- 2/3 of particles in jets are charged

• Missing P_T of tracks = TMET

- Provides confirmation of high MET measured in calorimeter
- Helpful for reducing QCD

Improving jet resolution

- ▶ H1 algorithm
 - New : 1st time in CDF analysis
- ▷ Correct calorimeter towers with matched higher P_T tracks

First stage NN

Trained to remove QCD

Cut here
Removes 65% of Multijet
Removes only 5% of signal

First stage NN Trained to remove QCD

Second stage NN Removes W/Z+jets and top

Uses 3 btagging categories for final result (this is one)

Cut here
Removes 65% of Multijet
Removes only 5% of signal

First stage NN Trained to remove QCD

Second stage NN Removes W/Z+jets and top

Uses 3 btagging categories for final result (this is one)

Cut here
Removes 65% of Multijet
Removes only 5% of signal

£ = 2.1 fb⁻¹
Upper limit: 7.9*SM (exp. 6.3*SM)
World's best in this channel

First stage NN Trained to remove QCD

Second stage NN Removes W/Z+jets and top

Uses 3 btagging categories for final result (this is one)

Cut here
Removes 65% of Multijet
Removes only 5% of signal

£ = 2.1 fb⁻¹
Upper limit: 7.9*SM (exp. 6.3*SM)
World's best in this channel

With more *L* as good as WH "golden channel" "Diamond in the Rough" Channel

Ben Kilminster, CERN seminar '08

Getting every last Higgs event at low mass

Analyses become more challenging

\odot Z/W + H \rightarrow qq + bb

More signal than lepton modes but enormous QCD backgrounds

$H \rightarrow TT$

Selection: $H \rightarrow \tau \tau + 2$ jets Signal : $gg \rightarrow H \rightarrow \tau \tau$, $VH \rightarrow qq\tau \tau$, V.B.F. $H \rightarrow \tau \tau$ qq

High Mass Higgs search

m_H ~ 160 GeV <u>H → WW</u> most important channel

High mass H→WW

 $m_H = 160 \text{ GeV}$

New: dedicated analyses in different 0, 1, 2 jet bins

Process	H → WW + >=2j Evts, £ = 3fb ⁻¹		
$gg \rightarrow H \rightarrow WW$	1.52 ± 0.26		
$WH \rightarrow WWW$	1.18 ± 0.16		
$ZH \rightarrow WWW$	0.59 ± 0.08		
V.B.F. H → WW	0.61 ± 0.1		

High mass H→WW

 $m_H = 160 \text{ GeV}$

New: dedicated analyses in different 0, 1, 2 jet bins

Process	H → WW + >=2j Evts, £ = 3fb ⁻¹		
$gg \rightarrow H \rightarrow WW$	1.52 ± 0.26		
$WH \rightarrow WWW$	1.18 ± 0.16		
$ZH \rightarrow WWW$	0.59 ± 0.08		
V.B.F. $H \rightarrow WW$	0.61 ± 0.1		

Divide and conquer

High mass H→WW

 $m_H = 160 \text{ GeV}$

New: dedicated analyses in different 0, 1, 2 jet bins

Process	$H \rightarrow WW + \ge 2j$ Evts, $\mathcal{L} = 3fb^{-1}$		
$gg \rightarrow H \rightarrow WW$	1.52 ± 0.26		
$WH \rightarrow WWW$	1.18 ± 0.16		
$ZH \rightarrow WWW$	0.59 ± 0.08		
V.B.F. $H \rightarrow WW$	0.61 ± 0.1		

Divide and conquer

# jets	H→WW events	Total Bkg events	% ww	% Drell- Yan	%	% fakes & conversions
0	8	540	52	12	0.2	30
1	5	230	32	31	11	16
2	4	130	12	22	54	8

Different background compositions
 Analyses optimized for each jet bin

Ben Kilminster, CERN seminar '08

$H \rightarrow WW : 0 jets$

- WW background
 - Primarily distinguished by spin correlation of leptons
- Fakes and conversions
 - Difficult to model, require data validation

00000

00000

q

$H \rightarrow WW : 1 \text{ jet}$

Drell-Yan & WW bkgs contribute equally
 Check Drell-Yan has proper dilepton & MET correlations
 DY can be cleaned up with special MET calculations

00000

$H \rightarrow WW : 2 jet$

Top pairs biggest bkg (tt → WbWb → lvlvbb)

- Analysis requires anti-b tag to get rid of top
- Can also examine b-tagged control region to test model

00000

00000

q

$H \rightarrow WW$ analyses results

	O J 1 J		2 J	
observed	552	227	139	
expected	540 ± 65	226 ± 28	129 ± 20	

$H \rightarrow WW$ analyses results

	ΟJ	1 J	2 J	
observed	552	227	139	
expected	540 ± 65	226 ± 28	129 ± 20	

OJ NN using LO matrix elements probabilities, sum transverse energies, dΦ(l1,l2), dR(l1,l2)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 NN Output Ben Kilminster, CERN seminar '08

 $m_H = 170 \text{ GeV}$

$H \rightarrow WW$ analyses results

	ΟJ	1 J	2 J	
observed	552	227	139	
expected	540 ± 65	226 ± 28	129 ± 20	

1 J

because of extra jets

CDF Run II Preliminary

1 Jets HWW $M_{\mu} = 170 \text{ GeV/c}^2$

NN similar to OJ NN: adds in

special MET cut, lepton P_Ts ,

removes LO matrix elements

0 J NN using LO matrix elements probabilities, sum transverse energies, dΦ(l1,l2), dR(l1,lŽ)

High S/B HWW VBF WH ZH Wj WY tt WZ ZZ DY WW Data 14 12 **CDF Run II Preliminary** 0 Jets HWW $M_{H} = 170 \text{ GeV/c}^2$ 10 50 L 40 High S/B HWW 30 Wi Wγ 20 tt 04 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 WΖ NN Output 10 ZZ DY W W 0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 Λ $m_{\rm H} = 170 \text{ GeV}$ - Data NN Output

L = 3.0 fb⁻¹

Ben Kilminster, CERN seminar '08

- Leading systematics :
 - $\bowtie WW, \dagger t, H \rightarrow WW$
 - □ 10-15% cross-section
 - ▷ W+jets, W+Y
 - 20–30% jet fakes and conversions
 - Drell-Yan
 - □ 20% MET modeling

CDF Combination

Solution Low and high mass Higgs channels combined for CDF

CDF Combination

Solution Low and high mass Higgs channels combined for CDF

CDF results - Past and Future

\odot For m_H = 160 GeV

- Baseline analysis (2004) would require 36 fb⁻¹ for 2σ sensitivity
- Advanced analysis now sensitive with < 5 fb⁻¹
- ▷ CDF only limit is 1.6*SM
- Goal is bottom of yellow band
- Expect to exclude significant region around $m_{\rm H}$ = 160 GeV with more data

CDF results - Past and Future

\odot For m_H = 160 GeV

- Baseline analysis (2004) would require 36 fb⁻¹ for 2σ sensitivity
- Advanced analysis now sensitive with < 5 fb⁻¹
- ▷ CDF only limit is 1.6*SM
- Goal is bottom of yellow band
- Expect to exclude significant region around m_H = 160 GeV with more data

CDF Run II Preliminary, m_H=160 GeV 18 Expected Limit/SM Summer 2004 Channels 16 Summer 2005 Channels Summer 2007 Channels 14 January 2008 **ICHEP 2008** 12 With Improvements 10 8 2004 analyses 6 with more data 4 2 SM 0 2 3 $\mathbf{\Delta}$ 5 0 6 Integrated luminosity/Experiment (fb⁻¹)

- \odot For m_H = 115 GeV
 - Ongoing improvements
 - D B-tagging
 - □ Lepton acceptance
 - \square Jet / Met resolution
 - D Complementary triggers
 - Signal/Bkg separation techniques
 - Nearing yellow band steadily

CDF results - Past and Future

\odot For m_H = 160 GeV

- Baseline analysis (2004) would require 36 fb⁻¹ for 2σ sensitivity
- Advanced analysis now sensitive with < 5 fb⁻¹
- ▶ CDF only limit is 1.6*SM
- Goal is bottom of yellow band
- Expect to exclude significant region around $m_H = 160$ GeV with more data

- \odot For m_H = 115 GeV
 - Ongoing improvements
 - D B-tagging
 - □ Lepton acceptance
 - \square Jet / Met resolution
 - D Complementary triggers
 - Signal/Bkg separation techniques
 - Nearing yellow band steadily

More on SUSY

If SUSY is the correct theory

- Some Higgs production mechanisms enhanced by $(\tan \beta)^2$
- ▷ Direct gg \rightarrow H \rightarrow bb and H \rightarrow TT modes become viable searches for neutral SUSY Higgs mass < ~200 GeV

CDF Conclusions

- Searching for every available Higgs boson
 Low mass Higgs
 - ▶ World's best limits in $ZH \rightarrow IIbb$, $WH \rightarrow Ivbb$, $VH \rightarrow MET+bb$ □ Additional all-jets and TT modes improve total sensitivity
 - \triangleright Combined limit 3.6 * SM expected with 3 fb⁻¹
 - Steady improvements since 2005
 - D Near sensitivity for low mass exclusion with full dataset & DO

High mass Higgs

- \triangleright World's best limits in $H \rightarrow WW$
- ▶ 1.6 * SM expected with 3 fb^{-1}
- Goal is single-experiment exclusion for range of masses

MSSM Higgs

- Low mass ZH/WH Higgs searches may be best way to find CMSSM
- ▷ SUSY searches for $H \rightarrow bb$ and $H \rightarrow \tau\tau$ extend limits on tan β

CDF + DO Combination

- We use two different methods (done by different people on different experiments) to verify accuracy
 - ▷ Method 1 : CLs
 - Method 2 : Bayesian expected to be more conservative (coverage is greater than 95%)

CDF + DO Combination

- We use two different methods (done by different people on different experiments) to verify accuracy
 - ▶ Method 1 : CLs
 - Method 2 : Bayesian expected to be more conservative (coverage is greater than 95%)

Combination with DO

CLs combination plot

95%CL Limits/SM				
M Higgs(GeV)	160	165	170	175
Method 1: Exp	1.3	1.2	1.4	1.7
Method 1: Obs	1.4	1.2	1.0	1.3
Method 2: Exp	1.2	1.1	1.3	1.7
Method 2: Obs	1.3	1.1	0.95	1.2
Combination with DO

CLs combination plot

Results are consistent : m_H at 170 GeV ruled out at 95% CL

Ben Kilminster, CERN seminar '08

165

1.2

1.2

1.1

1.1

170

1.4

1.0

1.3

0.95

175

1.7

1.3

1.7

1.2

CDF + DO Conclusions

Searching for every available Higgs boson

- ▷ Using up to 3 fb⁻¹ of data per experiment
 - \square Current full dataset is ~4 fb⁻¹
 - □ Expect 6 8 fb⁻¹ total per experiment

MSSM Higgs

- Low mass ZH/WH Higgs searches may be best way to find CMSSM
- ▷ SUSY searches for $H \rightarrow bb$ and $H \rightarrow \tau\tau$ extend limits on tan β
- Solution Low mass Higgs
 - Steady improvements since 2005
 - D Near sensitivity for low mass exclusion with full dataset & DO
- High mass Higgs
 - ▷ Excluded m_H at 170 GeV !!
 - Goal is combined exclusion for wide range of high mass Higgs

B-tagging jets in WH \rightarrow lvbb

Algorithms :

- SVX Tag "ST"
- Loose SVX Tag
- NN flavor separator

Divide into subsets and win (WH expectations shown here)

B-tags	S	В	S/sqrt(B)
2 ST	1.6	150	0.13
ST+JP	1.1	160	0.09
1 ST	3.6	1750	0.09
sum in quadrature of S/sqrt(B) good figure of merit for sensitivity			0.14 → 0.18

$WH \rightarrow lvbb backup$

Test of NN in WH analysis

Control region with same kinematic selection

Using high statistics pretagged events

Ben Kilminster, CERN seminar '08