

Impact of α_s on Higgs production and decay uncertainties

Luminita Mihaila

University of Heidelberg

FCC-ee, CERN, 12-13 October 2015 - p.1

Motivation

Precise predictions for Higgs production and decays essential for

- Higgs Coupling Measurements
- Determination of the Higgs potential
- Search for the New Physics

Motivation

Precise predictions for Higgs production and decays essential for

- Higgs Coupling Measurements
- Determination of the Higgs potential
- Search for the New Physics

Goal:

reduce theoretical and parametric uncertainties below the experimental ones.

Higgs decays

Theoretical uncertainties

Theoretical Uncertainties (update of [LHC HXSWG 2011])

Partial Width	QCD	Electroweak	Total
$H \rightarrow b\bar{b}/c\bar{c}$	$\sim 0.1\%$	$\sim 0.3\%$ for $M_{ m H} \lesssim 135{ m GeV}$	$\sim 0.3\%$
$\mathrm{H} \to \tau^+ \tau^- / \mu^+ \mu^-$		$\sim 1\text{-}2\%$ for $M_{ m H} \lesssim 135{ m GeV}$	$\sim 2\%$
$\mathrm{H} \to \mathrm{gg}$	$\sim 3\%$	$\sim 1\%$	$\sim 3\%$
${ m H} ightarrow \gamma \gamma$	< 1%	< 1%	$\sim 1\%$
${ m H} ightarrow { m Z} \gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
$\rm H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_{ m H} < 500{ m GeV}$	$\sim 0.5\%$

$$\Gamma(H \to b\bar{b}) = \Gamma^{(0)} \left(1 + \Delta^{(\alpha_s)} + \Delta^{(\alpha)} + \Delta^{(\alpha\alpha_s)} + \ldots \right)$$

	$\Delta^{(\alpha_{\rm s})}$	$\Delta^{(lpha_{ m s}^2)}$	$\Delta^{(lpha_{ m s}^3)}$	$\Delta^{(lpha_{ m s}^4)}$
QCD	0.2040	0.0378	0.0020	-0.0014
	$\Delta^{(\text{QED})}$	$\Delta^{(\text{QED},\alpha_{s})}$		
QED/QCD	0.0011	0.0001		
	$\Delta^{(\text{weak})}$	$\Delta^{(\mathrm{weak}, \alpha_{\mathrm{s}})}$	$\Delta^{(\text{weak},\text{Z})}$	$\Delta^{(\mathrm{weak},\alpha_{\mathrm{s}},\mathrm{Z})}$
weak/QCD	-0.0100	-0.0029	-0.0097	-0.0020

$$\Gamma(H \to b\bar{b}) = \Gamma^{(0)} \left(1 + \Delta^{(\alpha_s)} + \Delta^{(\alpha)} + \Delta^{(\alpha\alpha_s)} + \ldots \right)$$

	$\Delta^{(\alpha_{\rm s})}$	$\Delta^{(lpha_{ m s}^2)}$	$\Delta^{(lpha_{ m s}^3)}$	$\Delta^{(lpha_{ m s}^4)}$
QCD	0.2040	0.0378	0.0020	-0.0014
	$\Delta^{(\text{QED})}$	$\Delta^{(\text{QED},\alpha_{s})}$		
QED/QCD	0.0011	0.0001		
	$\Delta^{(\text{weak})}$	$\Delta^{(\mathrm{weak},\alpha_{\mathrm{s}})}$	$\Delta^{(\text{weak},\text{Z})}$	$\Delta^{(\mathrm{weak},\alpha_{\mathrm{s}},\mathrm{Z})}$
weak/QCD	-0.0100	-0.0029	-0.0097	-0.0020

- M_t^2 -Approximation provides less than 20 % of $\Delta^{(\text{weak},\alpha_s)}$
- Non-factorisable effects ($\approx 30\%$)

Parametric uncertainties

Parametric Uncertainties (from [LHC HXSWG 2013])

Channel	$M_{\rm H}[{\rm GeV}]$	$\Delta \alpha_s$	Δm_b	Δm_c
$\mathrm{H} \to \mathrm{b}\bar{\mathrm{b}}$	126	$\pm 0.4~\%$	$\pm 0.8\%$	$\pm 0~\%$
$\mathrm{H}\to\mathrm{c}\bar{\mathrm{c}}$	126	± 7.1 %	$\pm 0.1\%$	\pm 2.3 %
$H \rightarrow gg$	126	± 4.1 %	$\pm 0.1\%$	$\pm 0~\%$

Parameter	Central Value	Uncertainty
$\alpha_s(M_Z)$	0.1184	± 0.002
$m_c(m_c)$	$1.279~{\rm GeV}$	$\pm 0.013~{\rm GeV}$
$m_b(m_b)$	4.163 GeV	$\pm 0.016~{\rm GeV}$

Higgs Production

Uncertainties (update of [LHC HXSWG 2013] for $\sqrt{s} = 14$ TeV)

Process	Cross section(pb)	Sca	le (%)	PDF $+\alpha_s$
ggH	49.87	-2.61	+ 0.32	-6.2 +7.4
VBF	4.15	-0.4	+ 0.8	± 2.5
WH	1.474	-0.6	+ 0.3	± 3.8
ZH	0.863	-1.8	+ 2.7	± 3.7
ttH	0.611	-9.3	+ 5.9	\pm 8.9

Anastasiou, Duhr, Dulat, Mistlberger '15

FCC-ee, CERN, 12-13 October 2015 – p.9

Uncertainties (update of [LHC HXSWG 2013] for $\sqrt{s} = 14$ TeV)

Process	Cross section(pb)	Sca	le (%)	PDF + $\alpha_s(\%)$
ggH	49.87	-2.61	+ 0.32	-6.2 +7.4
VBF	4.15	-0.4	+ 0.8	± 2.5
WH	1.474	-0.6	+ 0.3	± 3.8
ZH	0.863	-1.8	+ 2.7	± 3.7
ttH	0.611	-9.3	+ 5.9	\pm 8.9

Uncertainties (update of [LHC HXSWG 2013] for $\sqrt{s} = 14$ TeV)

Process	Cross section(pb)	Scal	le (%)	$\delta \alpha_s(\%)$
ggH	49.87	-2.61	+ 0.32	± 3.7
VBF	4.15	-0.4	+ 0.8	± 0.7
WH	1.474	-0.6	+ 0.3	± 0.9
ZH	0.863	-1.8	+ 2.7	± 0.9
ttH	0.611	-9.3	+ 5.9	± 3.0

 $\sigma(ggH)$ @ NNLO

NNLOPDF

•
$$\sqrt{s} = 14 \text{ TeV}; \quad \mu_R = \mu_F = M_H/2; \quad M_H = 125.09 \text{ GeV}$$

 $\sigma(\mathbf{ggH})$ (pb):

PDF	CT10	MSTW2008	NNPDF23	HERAPDF15
$\alpha_s(M_Z) = 0.114$				48.41 ± 0.58
$\alpha_s(M_Z) = 0.117$	50.07 ± 0.58	51.13 ± 0.59	52.42 ± 0.61	
$\alpha_s(M_Z) = 0.119$	52.00 ± 0.59	52.84 ± 0.60	54.38 ± 0.62	

with **SUSHI** [Harlander, Liebler and Mantel'15]

 $\sigma(ggH)$ @ NNLO

Interpretended in the second secon

•
$$\sqrt{s} = 14 \text{ TeV}; \quad \mu_R = \mu_F = M_H/2; \quad M_H = 125.09 \text{ GeV}$$

 $\sigma(\mathbf{ggH})$ (pb):

PDF	CT10	MSTW2008	NNPDF23	HERAPDF15
$\alpha_s(M_Z) = 0.114$				48.41 ± 0.58
$\alpha_s(M_Z) = 0.117$	50.07 ± 0.58	51.13 ± 0.59	52.42 ± 0.61	
$\alpha_s(M_Z) = 0.119$	52.00 ± 0.59	52.84 ± 0.60	54.38 ± 0.62	

with **SUSHI** [Harlander, Liebler and Mantel'15]

similar results with **HIGLU** [M. Spira]

$$\delta \alpha_s = 0.002 \Rightarrow \delta \sigma / \sigma = 3 - 4\%$$

$\sigma(ggH)$ @ NNLO in the MSSM

[Pak, Steinhauser and Zerf'12]

Higgs Production @ e^+e^- **FC**

- $e^+e^- \to t\bar{t}H$
 - QCD corrections especially large near $t\bar{t}$ -threshold
 - Theory uncertainty $\approx 5\%$
 - Parametric uncertainty induced by $\delta \alpha_s$ at $\mathcal{O}(\%)$

Higgs Production @ e^+e^- **FC**

- $e^+e^- \to t\bar{t}H$
 - QCD corrections especially large near $t\bar{t}$ -threshold
 - Theory uncertainty $\approx 5\%$
 - Parametric uncertainty induced by $\delta \alpha_s$ at $\mathcal{O}(\%)$
- see talk by H. Kühn

Summary

Precise α_s knowledge essential for

- hadronic Higgs decay rates
- Higgs production cross section in ggh
- It Higgs production cross section in $e^+e^- \rightarrow t\bar{t}H$