α_S from Pion Decay Constant using Renormalization Group Optimized Perturbation

Jean-Loïc Kneur (Lab. Charles Coulomb, U. Montpellier)

mostly based on arXiv:1305.6910, Phys. Rev. D 88, 074025 (JLK, A. Neveu)

Workshop on High precision α_S measurements: from LHC to FCC-ee, CERN, Oct. 12 2015

- 1. Introduction/Motivations
- 2. (Variationally) Optimized Perturbation (OPT)
- 3. Renormalization Group improvement of OPT (RGOPT)
- 4. "State-of-the art" $F_{\pi}/\Lambda^{QCD}_{\overline{\rm MS}}$ determination and α_S
- 5. Summary and (preliminary) Workshop points

1. Introduction/Motivations

Goal: Peculiar resummations of perturbative expansions can give approximations to some nonperturbative parameters Input: $F_{\pi} = 92.2 \pm .03 \pm .14$ ($\pi \rightarrow l\bar{\nu}(\gamma)$ decays) (PDG)

In a nutshell: estimate $F_{\pi}(m_q = 0)/\Lambda_{\overline{\text{MS}}}^{\text{QCD}}$ 'nonperturbatively', then $\Lambda_{\overline{\text{MS}}}^{n_f=3} \to \alpha_S^{\overline{\text{MS}}}$ (standard perturbative RG evolution). How?: start from *perturbative* $F_{\pi}^2 \simeq m_q^2 \sum_{n,p} (\alpha_S)^n f_{np}(\ln m_q)$

(known at present to 4-loop order for any n_f)

Now $m_{quark} \rightarrow m$ variational mass (in a well-defined way), optimized consistently with RG properties $\equiv RG(OPT)$.

 $\Rightarrow m = \mathcal{O}(\Lambda^{QCD}) \Rightarrow F_{\pi}^{m_q=0} / \Lambda_{\overline{\text{MS}}}^{n_f=3} \simeq 0.25 \pm .01 \rightarrow \alpha_S(m_Z) \simeq 0.1174 \pm .001 \pm .001$ •NB recently RGOPT applied to $\langle \bar{q}q \rangle$ at 3,4 -loops (using spectral density of Dirac operator) gives $\langle \bar{q}q \rangle_{m_q=0}^{1/3} (2 \,\text{GeV}) \simeq -(0.84 \pm 0.01) \Lambda_{\overline{\text{MS}}}$ (JLK, A.Neveu 1506.07506) **Chiral Symmetry Breaking (** χ **SB) Order parameters**

Conventional wisdom: hopeless from standard perturbation:

1. $\langle \bar{q}q \rangle^{1/3}$, $F_{\pi},.. \sim \mathcal{O}(\Lambda_{QCD}) \simeq 300 \text{ MeV}$ $\rightarrow \alpha_S$ (a priori) large \rightarrow invalidates pert. expansion

2. $\langle \bar{q}q \rangle$, F_{π} ,... perturbative series $\sim (m_q)^d \sum_{n,p} \alpha_s^n \ln^p(m_q)$ vanish for $m_q \rightarrow 0$ at any pert. order (trivial chiral limit)

3. More sophisticated arguments e.g. (infrared) renormalons (factorially divergent pert. coeff. at large orders) All seems to tell that χ SB parameters are intrinsically NP

•Optimized pert. (OPT): circumvents at least 1., 2., and may give more clues to pert./NP bridge

2. (Variationally) Optimized Perturbation (OPT)

Trick: add and subtract a mass, consider $m \delta$ as interaction: $\mathcal{L}_{QCD}(g, m_q) \rightarrow \mathcal{L}_{QCD}(\delta g, m(1 - \delta)) \quad (\alpha_S \equiv g/(4\pi))$

 $0 < \delta < 1$ interpolates between \mathcal{L}_{free} and massless \mathcal{L}_{int} ; (quark) mass $m_q \rightarrow m$: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series, expand in δ after:

 $m_q \rightarrow m (1 - \delta); \quad \alpha_S \rightarrow \delta \alpha_S$ then take $\delta \rightarrow 1$ (to recover original massless theory):

BUT a *m*-dependence remains at any finite δ^k -order: fixed typically by optimization (OPT):

 $\frac{\partial}{\partial m}$ (physical quantity) = 0 for $m = \tilde{m}_{opt}(\alpha_S) \neq 0$

Exhibit *dimensional transmutation*: $\tilde{m}_{opt} \sim \mu e^{-1/(\beta_0 \alpha_S)}$ But does this 'cheap trick' always work? and why?

Expected behaviour (Ideally...)

Expect *flatter* m-dependence at increasing δ orders...

But not quite what happens.. except for $\phi^4(D = 1)$ (oscillator) Higher orders: \rightarrow what about convergence?

Main pb at higher order: OPT: $\partial_m(...) = 0$ has multi-solutions (some complex!), how to choose right one??

Simpler model's support + properties

•Convergence proof of this procedure for $D = 1 \lambda \phi^4$ oscillator (cancels large pert. order factorial divergences!) Guida et al '95 particular case of 'order-dependent mapping' Seznec+Zinn-Justin '79 (exponentially fast convergence for ground state energy $E_0 = const.\lambda^{1/3}$; good to % level at second δ -order)

•In renormalizable QFT, also produces factorial damping at large pert. orders (JLK, Reynaud '2002)

•Flexible, Renormalization-compatible, gauge-invariant: applications also at finite temperature (many variants: 'screened pert.', 'hard thermal loop resummation', ...) (NB recently our RG(OPT) variant improves well-known problem of unstable thermal perturbation (JLK + M.B.Pinto 1507.03508; 1508.02610))

3. RG improved OPT (RGOPT)

Our main new ingredient (JLK, A. Neveu 2010):

Consider a physical quantity (perturbatively RG invariant), e.g. pole mass M (or here will be F_{π}): in addition to OPT Eq: $\frac{\partial}{\partial m} M^{(k)}(m, g, \delta = 1)|_{m \equiv \tilde{m}} \equiv 0$

Require (δ -modified!) series at order δ^k to satisfy a standard perturbative Renormalization Group (RG) equation:

$$\mathrm{RG}\left(M^{(k)}(m,g,\delta=1)\right) = 0$$

with standard RG operator: ($g = 4\pi\alpha_S$)

$$\mathsf{RG} \equiv \mu \frac{d}{d\,\mu} = \mu \frac{\partial}{\partial\mu} + \beta(g) \frac{\partial}{\partial g} - \gamma_m(g) \, m \frac{\partial}{\partial m}$$

 $\beta(g) \equiv -2b_0g^2 - 2b_1g^3 + \cdots, \quad \gamma_m(g) \equiv \gamma_0g + \gamma_1g^2 + \cdots$

 \rightarrow Combined with OPT, RG Eq. takes a reduced form:

$$\left[\mu\frac{\partial}{\partial\mu} + \beta(g)\frac{\partial}{\partial g}\right]M^{(k)}(m, g, \delta = 1) = 0$$

Note: OPT+RG completely fix $m \equiv \tilde{m}$ and $g \equiv \tilde{g}$

• But $\Lambda_{\overline{MS}}(g)$ satisfies by def. $\left[\mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g}\right] \Lambda_{\overline{MS}} \equiv 0$ consistently at a given pert. order for $\beta(g)$. Thus equivalent to:

$$\frac{\partial}{\partial m} \left(\frac{M^k(m, g, \delta = 1)}{\Lambda_{\overline{\mathsf{MS}}}(g)} \right) = 0 \; ; \quad \frac{\partial}{\partial g} \left(\frac{M^k(m, g, \delta = 1)}{\Lambda_{\overline{\mathsf{MS}}}(g)} \right) = 0 \; \text{for } \tilde{m}, \tilde{g}$$

•Sort of "virtual" (variational) fixed point (but $\beta(g) \neq 0$!) •Optimal $\tilde{m}, \tilde{g} = 4\pi \tilde{\alpha}_S$ unphysical: true α_S from $\frac{F_{\pi}}{\Lambda_{\overline{MS}}}(\tilde{m}, \tilde{g})$ •Reproduces at first order exact nonpert results in simpler (e.g. Gross-Neveu) models

OPT + RG = RGOPT main new features

•Embarrassing freedom in interpolating Lagrangian, e.g.: $m \to m \, (1 - \delta)^a$

In most previous works: linear case a = 1 for 'simplicity'... but spoils RG invariance...

[exceptions: Bose-Einstein Condensate T_c shift, calculated from $O(2)\lambda\phi^4$, requires $a \neq 1$: gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto '04)

•OPT,RG Eqs: many solutions at increasing δ^k -orders

 \rightarrow Our approach restores RG +requires OPT, RG sol. to match standard perturbation (i.e. Asymptotic Freedom in QCD): $\alpha_S \rightarrow 0, \mu \rightarrow \infty$: $\tilde{g} = 4\pi \tilde{\alpha}_S \sim \frac{1}{2b_0 \ln \frac{\mu}{\tilde{m}}} + \cdots$

 \rightarrow At arbitrary order, AF-compatible RG + OPT branch, often unique, only appear for a critical universal *a*:

$$m \to m (1 - \delta)^{\frac{\gamma_0}{2b_0}}$$
; (e.g. $\frac{\gamma_0}{2b_0} (\text{QCD}, n_f = 3) = \frac{4}{9}$)
t removes spurious solutions incompatible with AF

4. Application: Pion decay constant F_{π}/Λ

Chiral Symmetry Breaking (CSB) $SU(n_f)_L \times SU(n_f)_R \rightarrow SU(n_f)_{L+R}$ for n_f massless quarks. ($n_f = 2, n_f = 3$) F_{π} given from (nonperturbative) definition at $p^2 \rightarrow 0$:

$$i\langle 0|TA^i_{\mu}(p)A^j_{\nu}(0)|0\rangle \equiv \delta^{ij}g_{\mu\nu}F^2_{\pi} + \mathcal{O}(p_{\mu}p_{\nu})$$

where quark axial current: $A^i_{\mu} \equiv \bar{q}\gamma_{\mu}\gamma_5 \frac{\tau_i}{2} q$ $F_{\pi} \neq 0$: main (lowest order) CSB order parameter

 $m_q \neq 0$: perturbative expansion known to 3,4 loops (3-loop Chetyrkin et al '95; 4-loop Maier et al '08 '09, +Maier, Marquard private comm.)

(Standard) perturbative available information

$$F_{\pi}^{2}(pert)_{\overline{\text{MS}}} = N_{c} \frac{m^{2}}{2\pi^{2}} \left[-L + \frac{\alpha_{S}}{4\pi} (8L^{2} + \frac{4}{3}L + \frac{1}{6}) + (\frac{\alpha_{S}}{4\pi})^{2} [f_{30}(n_{f})L^{3} + f_{31}(n_{f})L + f_{32}(n_{f})L + f_{33}(n_{f})] + \mathcal{O}(\alpha_{S}^{3}) \right]$$

 $L \equiv \ln \frac{m}{\mu}, n_f = 2(3)$

Note: finite part (after mass + coupling renormalization) not separately RG-inv: (i.e. $F_{\pi}^2 \sim \langle 0|TA^{\mu}A^{\nu}|0\rangle$ mixes with $m^2 1$ operator)

 \rightarrow (extra) renormalization by subtraction of the form: $S(m, \alpha_S) = m^2(s_0/\alpha_S + s_1 + s_2\alpha_S + ...)$ where s_i fixed requiring RG-inv order by order: $s_0 = \frac{3}{16\pi^3(b_0 - \gamma_0)}$, $s_1 = ...$

Same well-known feature for $m \langle \bar{q}q \rangle$, related to vacuum energy, needs an extra (additive) renormalization in \overline{MS} -scheme to be RG invariant.

Warm-up calculation: pure RG approximation

2-loop + neglecting non-RG (non-logarithmic) terms: $F_{\pi}^{2}(\mathsf{RG-1}, \mathcal{O}(g)) = 3 \frac{m^{2}}{2\pi^{2}} \left[-L + \frac{\alpha_{S}}{4\pi} (8L^{2} + \frac{4}{3}L) - \left(\frac{1}{8\pi(b_{0} - \gamma_{0})\alpha_{S}} - \frac{5}{12}\right) \right]$ $\rightarrow F_{\pi}^{2}(m \rightarrow m(1 - \delta)^{\gamma_{0}/(2b_{0})}, \alpha_{S} \rightarrow \delta\alpha_{S}, \mathcal{O}(\delta))|_{\delta \rightarrow 1} =$

$$3\frac{m^2}{2\pi^2} \left[-\frac{102\pi}{841\,\alpha_S} + \frac{169}{348} - \frac{5}{29}L + \frac{\alpha_S}{4\pi} (8L^2 + \frac{4}{3}L) \right]$$

OPT+RG: $\partial_m (F_\pi^2/\Lambda_{\overline{\text{MS}}}^2), \partial_{\alpha_S} (F_\pi^2/\Lambda_{\overline{\text{MS}}}^2) \equiv 0$: have a unique AF-compatible real solution: $\tilde{L} \equiv \ln \frac{\tilde{m}}{\mu} = -\frac{\gamma_0}{2b_0}$; $\tilde{\alpha}_S = \frac{\pi}{2}$ $\rightarrow F_\pi(\tilde{m}, \tilde{\alpha}_S) = (\frac{5}{8\pi^2})^{1/2} \tilde{m} \simeq 0.25 \Lambda_{\overline{\text{MS}}}$ (for $\Lambda_{\overline{\text{MS}}}^{1-loop} = \mu e^{-1/(\beta_0 \alpha_S)}$)

•Includes higher orders +non-RG terms: \tilde{m}_{opt} remains $\mathcal{O}(\Lambda_{\overline{\text{MS}}})$ (rather than $m \sim 0$): RG-consistent 'mass gap',

And OPT stabilizes $\alpha_S^{opt} \simeq .5$: more perturbative values NB $\tilde{m}, \tilde{\alpha}_S$ variational parameters (not directly physical)

Exact F_{π} **RG+OPT** solutions at 4-loops ($\overline{\text{MS}}$)

All branches of RG (thick) and OPT(dashed) solutions $Re[L \equiv \ln \frac{m}{\mu}(g)]$ to the δ -modified 3rd order (4-loop) perturbation ($g = 4\pi\alpha_S$). Unique AF compatible sol.: black dot

•However beyond lowest order, AF-compatibility and reality of solutions often incompatible... But, complex solutions are artefacts of solving *exactly* the RG and OPT (polynomial in L) Eqs, in \overline{MS} -scheme...

Recovering real AF-compatible solutions

Are there *perturbative* 'deformations' consistent with RG?: **Evidently: Renormalization scheme changes (RSC)** $m \rightarrow m'(1 + B_1g' + B_2g'^2 + \cdots), g \rightarrow g'(1 + A_1g' + A_2g'^2 + \cdots)$

Results with theoretical uncertainties

Beside recovering real solution, RSC offer reasonably convincing uncertainty estimates: non-unique RSC \rightarrow we take differences between those as th. uncertainties

Table 1: Main optimized results at successive orders ($n_f = 3$)

δ^k order	nearest-to- $\overline{\text{MS}}$ RSC \tilde{B}_i	\tilde{L}'	$ ilde{lpha}_S$	$\frac{F_0}{\overline{\Lambda}_{4l}}$ (RSC uncertainties)
δ , RG-2I	$\tilde{B}_2 = 2.38 10^{-4}$	-0.523	0.757	0.27 - 0.34
δ^2 , RG-3l	$\tilde{B}_3 = 3.39 10^{-5}$	-1.368	0.507	0.236 - 0.255
δ^3 , RG-4l	$\tilde{B}_4 = 1.51 10^{-5}$	-1.760	0.374	0.2409 - 0.2546

$$n_f = 2: \frac{F}{\overline{\Lambda}}(\delta^2) = 0.213 - 0.269 \ (\tilde{\alpha}_S = 0.46 - 0.64) \\ \frac{F}{\overline{\Lambda}}(\delta^3) = 0.2224 - 0.2495 \ (\tilde{\alpha}_S = 0.35 - 0.42)$$

•Empirical stability/convergence exhibited, with $2b_0 \tilde{g} \ln(\tilde{m}/\mu) \simeq 1$ i.e. $\tilde{m}_{opt} \simeq \mu e^{-1/(2b_0 \tilde{g})}$ (like first RG order)

More realistic: explicit symmetry breaking

•Need to "subtract" effect from explicit chiral symmetry breaking from genuine quark masses $m_u, m_d, m_s \neq 0$: This relies at this stage on other (mainly lattice) results:

 $\frac{F_{\pi}}{F} \sim 1.073 \pm 0.015$ [robust, $n_f = 2$ ChPT + lattice]

 $rac{F_{\pi}}{F_{0}} \sim 1.172(3)(43)$ (lattice MILC collaboration '10 using NNLO ChPT fits)

But quite different values by other collaborations

+ hint of slower convergence of $n_f = 3$ ChPT, e.g. Bernard, Descotes-Genon, Toucan '10

Alternative: implement explicit sym. break. within OPT (to be less dependent of lattice/ChPT results): $m \rightarrow m_{u,d,s}^{true} + m(1 - \delta)^{\gamma_0/(2b_0)}$: promising but involved RG+OPT Eqs. solving work in progress..., + missing full m_s dependence at 3- and 4-loop order)

Combined results with theoretical uncertainties:

Average different RSC +average δ^2 and δ^3 results: $\overline{\Lambda}_{4-loop}^{n_f=2} \simeq 359^{+38}_{-26}|_{(\text{rgopt th})} \pm 5|_{(F_{\pi}/F)} \text{ MeV}$ $\overline{\Lambda}_{4-loop}^{n_f=3} \simeq 317^{+14}_{-7}|_{(\text{rgopt th})} \pm 13|_{(F_{\pi}/F_0)} \text{ MeV}$

To be compared with some recent lattice results, e.g.: •'Schrödinger functional scheme' (ALPHA coll. Della Morte et al '12): $\Lambda_{\overline{\text{MS}}}(n_f = 2) = 310 \pm 30 \text{ MeV}$ •Twisted fermions (+NP power corrections) (Blossier et al '10):

 $\Lambda_{\overline{\text{MS}}}(n_f = 2) = 330 \pm 23 \pm 22_{-33} \text{ MeV}$

•static potential (Karbstein et al '14): $\Lambda_{\overline{\rm MS}}(n_f=2)=331\pm21~{
m MeV}$

Extrapolation to α_S **at high (perturbative)** q^2

Use only $\Lambda_{\overline{MS}}^{n_f=3}$ result, perform standard (perturbative 4-loop) evolution

 $\Lambda_{\overline{\rm MS}} \ll m_{charm} \ll m_{bottom} \dots$

• In $\overline{\text{MS}}$ -scheme non-trivial decoupling/matching: standard perturbative extrapolation (3,4-loop with m_c , m_b thresholds, Chetyrkin et al '06): $\alpha_S^{n_f+1}(\mu) = \alpha_S^{n_f}(\mu) \left(1 - \frac{11}{72}(\frac{\alpha_S}{\pi})^2 + (-0.972057 + .0846515n_f)(\frac{\alpha_S}{\pi})^3\right)$

 $\rightarrow \overline{\alpha}_S(m_Z) = 0.1174^{+.0010}_{-.0005}$ (rgopt th) $\pm .0010|_{(F_{\pi}/F_0)} \pm .0005_{evol}$

$$\overline{\alpha}_{S}^{n_{f}=3}(m_{\tau}) = 0.308^{+.007}_{-.004} \pm .007 \pm .002_{evol}$$

Compare to 2014 world average: $\alpha_S(m_Z) = 0.1185 \pm 0.0006$

5. Summary and Outlook

- •OPT gives a simple procedure to resum perturbative expansions, using only perturbative information.
- •Our RGOPT version includes 2 major differences w.r.t. most previous OPT approaches:
- 1) OPT+ RG optimization fix \tilde{m} and $\tilde{g} = 4\pi \tilde{\alpha}_S$
- 2) Requiring RG invariance or AF-compatible solutions after interpolation uniquely fixes the latter $m \to m(1 \delta)^{\gamma_0/(2b_0)}$: discards spurious solutions and accelerates convergence.

($\mathcal{O}(10\%)$) accuracy at 1-2-loops, empirical stability shown at 3-loop)

(Preliminary) Workshop tasks

Our latest estimate: $\alpha_S(m_Z) = 0.1174^{+.0010}_{-.0005}$ (rgopt th) $\pm .0010|_{(F_{\pi}/F_0)} \pm .0005_{evol}$

NB not trivial to combine properly our RGOPT *th errors* with Lattice (stat.+ syst.) uncertainties; and implement all this in world average

-Size of current exp/th uncertainties: missing higher orders, expected uncertainty in 10 years: new th developments, etc

•Direct F_{π} uncertainties ($\pi \rightarrow l\bar{\nu}(\gamma)$ decays): $F_{\pi} = 92.2 \pm .03(V_{ud}) \pm .14(th)$ (PDG) almost negligible (at present) relative to other errors

•RGOPT error: here rather conservative: average of 3- and 4-loop results. If only 4-loop: $\alpha_S(m_Z) = 0.1174 \pm .0008(\text{rgopt th}) + \cdots$

•Possible improvements: going to 5-loops? recent works (e.g. Karlsruhe group) on this [two-point correlators have many other interests (Lattice, sum rules,...]. No doubts will be done before 10 years.

Likewise perturbative evolution error might reduce a little.

•Before such full 5-loop results, we could include 5-loop LL, NLL, NNLL, ...approximations (available from RG properties).

•Most limiting at present: Lattice F_{π}/F_0 uncertainties: (apparently) no more precise lattice results recently (true chiral limit difficult) but progress surely soon.

•Alternative: implement explicit quark masses in our framework: IF works, $F_{\pi}/F_0 \sim 5\%$ uncertainty replaced by $\delta m_s \sim 2.7\%$ (Lattice FLAG 2014, also QCD sum rules)

•Expected improvements by the FCC-ee:

no idea in which way could influence our results

Backslides: Pre-QCD guidance: Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD (asymptotic freedom, (discrete) chiral sym., mass gap,...)

$$\mathcal{L}_{GN} = \bar{\Psi}i \; \partial \!\!\!/ \Psi + rac{g_0}{2N} (\sum_1^N \bar{\Psi}\Psi)^2$$
 (massless)

Standard mass-gap (massless, large *N* approx.): consider $V_{eff}(\sigma)$, $\sigma \sim \overline{\Psi}\Psi$;

$$\sigma \equiv M = \mu e^{-\frac{2\pi}{g}} \equiv \Lambda_{\overline{\rm MS}}$$

•Mass gap known exactly for any N:

 $\frac{M_{exact}(N)}{\Lambda_{\overline{\text{MS}}}} = \frac{(4e)^{\frac{1}{2N-2}}}{\Gamma[1-\frac{1}{2N-2}]}$ (From D = 2 integrability: Bethe Ansatz) Forgacs et al '91

massive GN model

Now consider *massive* case (still large *N*): $M(m,g) \equiv m(1+g \ln \frac{M}{\mu})^{-1}$: Resummed mass $(g/(2\pi) \rightarrow g)$ $= m(1-g \ln \frac{m}{\mu} + g^2(\ln \frac{m}{\mu} + \ln^2 \frac{m}{\mu}) + \cdots)$ (pert. re-expanded)

• Only fully summed M(m,g) gives right result, upon: -identify $\Lambda \equiv \mu e^{-1/g}$; $\rightarrow M(m,g) = \frac{m}{g \ln \frac{M}{\Lambda}} \equiv \frac{\hat{m}}{\ln \frac{M}{\Lambda}}$; -take reciprocal: $\hat{m}(F \equiv \ln \frac{M}{\Lambda}) = F e^F \Lambda \sim F$ for $\hat{m} \rightarrow 0$; $\rightarrow M(\hat{m} \rightarrow 0) \sim \frac{\hat{m}}{\hat{m}/\Lambda + O(\hat{m}^2)} = \Lambda_{\overline{MS}}$

never seen in standard perturbation: $M_{pert}(m \rightarrow 0) \rightarrow 0$

•But (RG)OPT gives $M = \Lambda_{\overline{MS}}$ at *first* (and any) δ -order (at any order, OPT sol.: $\ln \frac{m}{\mu} = -\frac{1}{q}$, RG sol.: g = 1)

•At δ^2 -order (2-loop), RGOPT ~ 1 - 2% from $M_{exact}(anyN)$