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1. Introduction/Motivations

Goal: Peculiar resummations of perturbative expansions can
give approximations to some nonperturbative parameters
Input: Fπ = 92.2± .03± .14 (π → lν̄(γ) decays) (PDG)

In a nutshell: estimate Fπ(mq = 0)/ΛQCD

MS
’nonperturbatively’,

then Λ
nf=3

MS
→ αMS

S (standard perturbative RG evolution).

How?: start from perturbative F 2
π ≃ m2

q

∑

n,p(αS)
nfnp(lnmq)

(known at present to 4-loop order for any nf )
Now mquark → m variational mass (in a well-defined way),
optimized consistently with RG properties≡ RG(OPT).
⇒ m = O(ΛQCD) ⇒ F

mq=0
π /Λ

nf=3

MS
≃ 0.25± .01 → αS(mZ) ≃ 0.1174± .001± .001

•NB recently RGOPT applied to 〈q̄q〉 at 3,4 -loops (using spectral density of Dirac operator)

gives 〈q̄q〉
1/3
mq=0(2GeV) ≃ −(0.84± 0.01)ΛMS (JLK, A.Neveu 1506.07506)
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Chiral Symmetry Breaking (χSB ) Order parameters

Conventional wisdom: hopeless from standard perturbation:

1. 〈q̄q〉1/3, Fπ,.. ∼ O(ΛQCD) ≃ 300 MeV
→ αS (a priori) large → invalidates pert. expansion

2. 〈q̄q〉, Fπ,.. perturbative series ∼ (mq)d
∑

n,p αn
s lnp(mq)

vanish for mq → 0 at any pert. order (trivial chiral limit)

3. More sophisticated arguments e.g. (infrared)
renormalons (factorially divergent pert. coeff. at large orders)

All seems to tell that χSB parameters are intrinsically NP

•Optimized pert. (OPT): circumvents at least 1., 2.,
and may give more clues to pert./NP bridge
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2. (Variationally) Optimized Perturbation (OPT)

Trick: add and subtract a mass, consider mδ as interaction:
LQCD(g,mq) → LQCD(δ g,m(1− δ)) (αS ≡ g/(4π))

0 < δ < 1 interpolates between Lfree and massless Lint;
(quark) mass mq → m: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series,
expand in δ after:

mq → m (1− δ); αS → δ αS

then take δ → 1 (to recover original massless theory):

BUT a m-dependence remains at any finite δk-order:
fixed typically by optimization (OPT):

∂
∂m(physical quantity) = 0 for m = m̃opt(αS) 6= 0

Exhibit dimensional transmutation: m̃opt ∼ µe−1/(β0αS)

But does this ’cheap trick’ always work? and why?
– p. 5



Expected behaviour (Ideally...)

Expect flatter m-dependence at increasing δ orders...

Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result
(non−perturbative)

O(Λ )

But not quite what happens.. except for φ4(D = 1) (oscillator)
Higher orders: → what about convergence?

Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions
(some complex!), how to choose right one??
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Simpler model’s support + properties

•Convergence proof of this procedure for D = 1 λφ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al ’95

particular case of ’order-dependent mapping’ Seznec+Zinn-Justin ’79

(exponentially fast convergence for ground state energy
E0 = const.λ1/3; good to % level at second δ-order)

•In renormalizable QFT, also produces factorial damping at
large pert. orders ( JLK, Reynaud ’2002 )

•Flexible, Renormalization-compatible, gauge-invariant:
applications also at finite temperature (many variants:
’screened pert.’, ’hard thermal loop resummation’, ...)
(NB recently our RG(OPT) variant improves well-known problem of unstable thermal

perturbation (JLK + M.B.Pinto 1507.03508; 1508.02610))

– p. 7



3. RG improved OPT (RGOPT)

Our main new ingredient (JLK, A. Neveu 2010):

Consider a physical quantity (perturbatively RG invariant),
e.g. pole mass M (or here will be Fπ):
in addition to OPT Eq: ∂

∂ mM (k)(m, g, δ = 1)|m≡m̃ ≡ 0

Require (δ-modified!) series at order δk to satisfy a standard
perturbative Renormalization Group (RG) equation:

RG
(

M (k)(m, g, δ = 1)
)

= 0

with standard RG operator: (g = 4παS)

RG ≡ µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

β(g) ≡ −2b0g
2 − 2b1g

3 + · · · , γm(g) ≡ γ0g + γ1g
2 + · · ·
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→ Combined with OPT, RG Eq. takes a reduced form:

[µ
∂

∂µ
+ β(g)

∂

∂g
]M (k)(m, g, δ = 1) = 0

Note: OPT+RG completely fix m ≡ m̃ and g ≡ g̃

• But ΛMS(g) satisfies by def. [µ ∂
∂µ

+ β(g) ∂
∂g
] ΛMS ≡ 0

consistently at a given pert. order for β(g).
Thus equivalent to:

∂

∂ m

(

Mk(m, g, δ = 1)

ΛMS(g)

)

= 0 ;
∂

∂ g

(

Mk(m, g, δ = 1)

ΛMS(g)

)

= 0 for m̃, g̃

•Sort of “virtual” (variational) fixed point (but β(g) 6= 0!)
•Optimal m̃, g̃ = 4πα̃S unphysical: true αS from Fπ

ΛMS
(m̃, g̃)

•Reproduces at first order exact nonpert results in simpler (e.g. Gross-Neveu) models
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OPT + RG = RGOPT main new features

•Embarrassing freedom in interpolating Lagrangian, e.g.:
m → m (1− δ)a

In most previous works: linear case a = 1 for ’simplicity’...
but spoils RG invariance...
[exceptions: Bose-Einstein Condensate Tc shift, calculated from O(2)λφ4, requires a 6= 1:

gives real solutions +related to critical exponents (Kleinert,Kastening; JLK,Neveu,Pinto ’04)

•OPT,RG Eqs: many solutions at increasing δk-orders

→ Our approach restores RG +requires OPT, RG sol. to
match standard perturbation (i.e. Asymptotic Freedom in
QCD): αS → 0,µ → ∞: g̃ = 4πα̃S ∼ 1

2b0 ln
µ
m̃
+ · · ·

→ At arbitrary order, AF-compatible RG + OPT branch,
often unique, only appear for a critical universal a:

m → m (1− δ)
γ0
2b0 ; (e.g. γ0

2b0
(QCD, nf = 3) = 4

9)

→ It removes spurious solutions incompatible with AF
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4. Application: Pion decay constantFπ/Λ

Chiral Symmetry Breaking (CSB) SU(nf )L × SU(nf )R → SU(nf )L+R

for nf massless quarks. ( nf = 2, nf = 3)
Fπ given from (nonperturbative) definition at p2 → 0:

i〈0|TAi
µ(p)A

j
ν(0)|0〉 ≡ δijgµνF

2
π +O(pµpν)

where quark axial current: Ai
µ ≡ q̄γµγ5

τi
2 q

Fπ 6= 0: main (lowest order) CSB order parameter

mq 6= 0: perturbative expansion known to 3,4 loops
(3-loop Chetyrkin et al ’95; 4-loop Maier et al ’08 ’09, +Maier, Marquard private comm.)

x x x x x x

x x x x
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(Standard) perturbative available information

F 2
π (pert)MS = Nc

m2

2π2

[

−L+ αS

4π (8L
2 + 4

3L+ 1
6)

+(αS

4π )
2[f30(nf )L

3 + f31(nf )L+ f32(nf )L+ f33(nf )] +O(α3
S)
]

L ≡ ln m
µ

, nf = 2(3)

Note: finite part (after mass + coupling renormalization) not
separately RG-inv: (i.e. F 2

π ∼ 〈0|TAµAν |0〉 mixes with m2 1

operator)

→ (extra) renormalization by subtraction of the form:
S(m,αS) = m2(s0/αS + s1 + s2αS + ...) where si fixed
requiring RG-inv order by order: s0 = 3

16π3(b0−γ0)
, s1 = ...

Same well-known feature for m 〈q̄q〉, related to vacuum
energy, needs an extra (additive) renormalization in
MS-scheme to be RG invariant.
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Warm-up calculation: pure RG approximation

2-loop + neglecting non-RG (non-logarithmic) terms:
F 2
π (RG-1,O(g)) = 3m2

2π2

[

−L+ αS
4π (8L

2 + 4
3L)− ( 1

8π(b0−γ0)αS
− 5

12)
]

→ F 2
π (m → m(1− δ)γ0/(2b0), αS → δαS,O(δ))|δ→1 =

3m2

2π2

[

− 102π
841αS

+ 169
348

− 5
29
L+ αS

4π
(8L2 + 4

3
L)

]

OPT+RG: ∂m(F 2
π/Λ

2
MS

), ∂αS
(F 2

π/Λ
2
MS

) ≡ 0: have a unique

AF-compatible real solution: L̃ ≡ ln m̃
µ
= − γ0

2b0
; α̃S = π

2

→ Fπ(m̃, α̃S) = ( 5
8π2 )

1/2m̃ ≃ 0.25ΛMS (for Λ1−loop

MS
= µ e−1/(β0αS))

•Includes higher orders +non-RG terms: m̃opt remains
O(ΛMS) (rather than m ∼ 0): RG-consistent ’mass gap’,

And OPT stabilizes αopt
S ≃ .5: more perturbative values

NB m̃, α̃S variational parameters (not directly physical)
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Exact Fπ RG+OPT solutions at 4-loops (MS)

-15 -10 -5 5 10 15

-4

-2

2

4

g

L(g)

perturbative AF
+, )(g−>0 µ >> m

=Ln(m/ µ )

All branches of RG (thick) and OPT(dashed) solutions Re[L ≡ ln m
µ
(g)] to the δ-modified

3rd order (4-loop) perturbation (g = 4παS ). Unique AF compatible sol.: black dot

•However beyond lowest order, AF-compatibility and reality
of solutions often incompatible...
But, complex solutions are artefacts of solving exactly the
RG and OPT (polynomial in L) Eqs, in MS-scheme...
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Recovering real AF-compatible solutions

Are there perturbative ’deformations’ consistent with RG?:
Evidently: Renormalization scheme changes (RSC)
m → m′(1 +B1g

′ +B2g
′2 + · · · ), g → g′(1 +A1g

′ +A2g
′2 + · · · )

O(δ), MS:

4 6 8 10 12 14 16

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

g

L(g)

→

8 10 12 14

-1.0

-0.5

0.5

g

L(g,B2)

→ We require contact solution (thus closest to MS):
∂
∂g

RG(g, L,Bi)
∂
∂L

OPT(g, L,Bi)−
∂
∂L

RG ∂
∂g

OPT ≡ 0

RSC affects pert. coefficients, but with property:
FMS
π (m, g; f ij) = F ′

π(m
′, g′; f ′

ij(Bi)) + gk+1remnant(Bi)

→ differences should decrease with perturbative order
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Results with theoretical uncertainties

Beside recovering real solution, RSC offer reasonably
convincing uncertainty estimates: non-unique RSC
→ we take differences between those as th. uncertainties

Table 1: Main optimized results at successive orders (nf = 3)

δk order nearest-to-MS RSC B̃i L̃′ α̃S
F0

Λ4l
(RSC uncertainties)

δ, RG-2l B̃2 = 2.38 10−4 −0.523 0.757 0.27− 0.34

δ2, RG-3l B̃3 = 3.39 10−5 −1.368 0.507 0.236− 0.255

δ3, RG-4l B̃4 = 1.51 10−5 −1.760 0.374 0.2409− 0.2546

nf = 2: F
Λ
(δ2) = 0.213− 0.269 (α̃S = 0.46− 0.64)
F
Λ
(δ3) = 0.2224− 0.2495 (α̃S = 0.35− 0.42)

•Empirical stability/convergence exhibited, with
2b0g̃ ln(m̃/µ) ≃ 1 i.e. m̃opt ≃ µ e−1/(2b0g̃) (like first RG order)
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More realistic: explicit symmetry breaking

•Need to "subtract" effect from explicit chiral symmetry
breaking from genuine quark masses mu,md,ms 6= 0:
This relies at this stage on other (mainly lattice) results:
Fπ

F ∼ 1.073± 0.015 [robust, nf = 2 ChPT + lattice]

Fπ

F0
∼ 1.172(3)(43) (lattice MILC collaboration ’10 using NNLO ChPT fits)

But quite different values by other collaborations

+ hint of slower convergence of nf = 3 ChPT, e.g. Bernard, Descotes-Genon, Toucan ’10

Alternative: implement explicit sym. break. within OPT
(to be less dependent of lattice/ChPT results):
m → mtrue

u,d,s +m(1− δ)γ0/(2b0): promising but involved RG+OPT
Eqs. solving work in progress...,
+ missing full ms dependence at 3- and 4-loop order )
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Combined results with theoretical uncertainties:

Average different RSC +average δ2 and δ3 results:

Λ
nf=2
4−loop ≃ 359+38

−26|(rgopt th) ± 5|(Fπ/F ) MeV

Λ
nf=3
4−loop ≃ 317+14

−7 |(rgopt th) ± 13|(Fπ/F0) MeV

To be compared with some recent lattice results, e.g.:
•’Schrödinger functional scheme’ (ALPHA coll. Della Morte et al ’12):
ΛMS(nf = 2) = 310± 30 MeV
•Twisted fermions (+NP power corrections) (Blossier et al ’10):
ΛMS(nf = 2) = 330± 23± 22−33 MeV
•static potential (Karbstein et al ’14): ΛMS(nf = 2) = 331± 21 MeV
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Extrapolation to αS at high (perturbative) q2

Use only Λ
nf=3

MS
result, perform standard (perturbative

4-loop) evolution

ΛMS ≪ mcharm ≪ mbottom...

•In MS-scheme non-trivial decoupling/matching:
standard perturbative extrapolation
(3,4-loop with mc, mb thresholds, Chetyrkin et al ’06 ):

α
nf+1

S (µ) = α
nf

S (µ)
(

1− 11
72

(αS
π

)2 + (−0.972057 + .0846515nf )(
αS
π

)3
)

→ αS(mZ) = 0.1174+.0010
−.0005(rgopt th)± .0010|(Fπ/F0) ± .0005evol

α
nf=3
S (mτ ) = 0.308+.007

−.004 ± .007± .002evol

Compare to 2014 world average:
αS(mZ) = 0.1185± 0.0006
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5. Summary and Outlook

•OPT gives a simple procedure to resum perturbative
expansions, using only perturbative information.

•Our RGOPT version includes 2 major differences w.r.t.
most previous OPT approaches:

1) OPT+ RG optimization fix m̃ and g̃ = 4πα̃S

2) Requiring RG invariance or AF-compatible solutions after
interpolation uniquely fixes the latter m → m(1− δ)γ0/(2b0):
discards spurious solutions and accelerates convergence.

(O(10%) accuracy at 1-2-loops, empirical stability shown at
3-loop)

– p. 20



(Preliminary) Workshop tasks

Our latest estimate:
αS(mZ) = 0.1174+.0010

−.0005(rgopt th)± .0010|(Fπ/F0) ± .0005evol

NB not trivial to combine properly our RGOPT th errors with Lattice (stat.+ syst.)
uncertainties; and implement all this in world average

-Size of current exp/th uncertainties: missing higher orders, expected uncertainty in 10
years: new th developments, etc
•Direct Fπ uncertainties (π → lν̄(γ) decays): Fπ = 92.2± .03(Vud)± .14(th) (PDG)
almost negligible (at present) relative to other errors

•RGOPT error: here rather conservative: average of 3- and 4-loop results.
If only 4-loop: αS(mZ) = 0.1174± .0008(rgopt th) + · · ·

•Possible improvements: going to 5-loops? recent works (e.g. Karlsruhe group) on this
[two-point correlators have many other interests (Lattice, sum rules,...].
No doubts will be done before 10 years.

Likewise perturbative evolution error might reduce a little.
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•Before such full 5-loop results, we could include 5-loop LL, NLL,NNLL,..approximations
(available from RG properties).

•Most limiting at present: Lattice Fπ/F0 uncertainties: (apparently) no more precise lattice
results recently (true chiral limit difficult) but progress surely soon.

•Alternative: implement explicit quark masses in our framework: IF works, Fπ/F0 ∼ 5%

uncertainty replaced by δms ∼ 2.7% (Lattice FLAG 2014, also QCD sum rules)

•Expected improvements by the FCC-ee:

no idea in which way could influence our results
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Backslides: Pre-QCD guidance: Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD
(asymptotic freedom, (discrete) chiral sym., mass gap,..)

LGN = Ψ̄i 6∂Ψ+ g0
2N (

∑N
1 Ψ̄Ψ)2 (massless)

Standard mass-gap (massless, large N approx.):
consider Veff (σ), σ ∼ Ψ̄Ψ;

σ ≡ M = µe−
2π
g ≡ ΛMS

•Mass gap known exactly for any N :
Mexact(N)

ΛMS
= (4e)

1
2N−2

Γ[1− 1
2N−2

]

(From D = 2 integrability: Bethe Ansatz) Forgacs et al ’91
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massive GN model

Now consider massive case (still large N ):
M(m, g) ≡ m(1 + g ln M

µ )−1: Resummed mass (g/(2π) → g)

= m(1− g ln m
µ + g2(ln m

µ + ln2 m
µ ) + · · · ) (pert. re-expanded)

• Only fully summed M(m, g) gives right result, upon:
-identify Λ ≡ µe−1/g; → M(m, g) = m

g ln M
Λ

≡ m̂
ln M

Λ

;

-take reciprocal: m̂(F ≡ ln M
Λ ) = F eF Λ ∼ F for m̂ → 0;

→ M(m̂ → 0) ∼ m̂
m̂/Λ+O(m̂2) = ΛMS

never seen in standard perturbation: Mpert(m → 0) → 0

•But (RG)OPT gives M = ΛMS at first (and any) δ-order
(at any order, OPT sol.: ln m

µ = −1
g , RG sol.: g = 1 )

•At δ2-order (2-loop), RGOPT ∼ 1− 2% from Mexact(anyN)
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