α_s from e⁺e⁻ event shapes

Stefan Kluth MPI für Physik FCC-ee workshop on high precision α_s measurements 12 Oct 2015

- Experimental
 - Experiment
 - Simulation
 - Analysis procedure
- Theory
 - Fixed order and resummation
 - Integration with hadronisation models
 - Other issues
- Summary

Event Shape Observables

Thrust 1-T:

Jet Broadening B_{T} and B_{W} :

$$B_{1,2} = \frac{\sum_{i \in H_{1,2}} p_{t,i}}{2\sum_{i} |\vec{p}_{i}|}$$
$$B_{T} = B_{1} + B_{2}$$
$$B_{W} = max(B_{1}, B_{2})$$

C-parameter:

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin(\Theta_{ij})}{\left(\sum_i |\vec{p}_i|\right)^2}$$

larger invariant mass in hemispheres H_1 and H_2 w.r.t. thrust axis n

Event selection

event shapes

Event selection

Experimental procedure

event shapes

Experimental problems

- Quality of detector model
 - unfolding incl. phase space extrapolation
 - improved resolution will help
- Physics model dependence of unfolding
 - "Pythia vs Herwig" unfolding, data driven tests
 - depends also on MC tuning quality
- Background subtraction
 - Improved resolution will help against W-pairs
- Background modelling
 - MC based subtraction or data driven procedure?

Massive (b) quarks

- Massive QCD
 - NLO "only", NNLO possible?
 - Resummation basically missing, possible?
 - Irreduceable theory systematics
- Need to treat experimentally
 - b-(anti-)tagging \Rightarrow b vs udsc separated samples
 - LEP experiments have done / could do this
 - Will add (small) experimental systematics
 - Si vertex detector resolution
 - Precision detector simulation

(Low) Energy points?

[arXiv:1412.2928, ICHEP 2014]

A few days of data taking at $\sqrt{s} < m_z$ reproduces PETRA / JADE with flavour tagging and improved resolution added Global fits / PC analyses dependent on low energy data to disentangle soft and hard QCD effects

Using the predictions

pQCD plus MC had. Corr.

PYTHIA

РҮТНІА

0.1

0.2

0.2

0.1

l/odo/d1-T

l/odo/d1-T

/odo/d1-7

14 GeV

0.4

0.4

0.5 1-T

35 GeV

 $\mathrm{C}_{\mathrm{had.}}$

4.5 4

3.5

2.5

1.5

0.5

Und Und Und Und U

1.25

0.75

0.5

0.25

1

[Gehrman, Gehrmann-deRidder, Glover, Heinrich, JHEP12(2007)094]

Perturbative prediction Fixed order (+ resum.) EVENT2, nlojet++, EERAD3, ...

Hadronisation correction strings or clusters Pythia, Herwig, Sherpa, ...

HERWIG

HERWIG

0.3

0.3

1.T [JADE, Eur.Phys.J.C64(2009)351] Particle level

1/odo/d1-

0.5

1/odo/d1-T

0.5

0.5

1/odo/1

1.T

0.1 0.2

0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4

IADE

JADE

JADE

43.8 GeV

NLO+NLL

35.0 GeV NNLO+NLL/

22.0 GeV NNLO+NLL

JADE

JADE

0.3 0.4

0.3 0.4

JADE

38.3 GeV NNLO+NLLA

34.6 GeV NNLO+NLLA

0.2 0.3 0.4

0.1

0.1 0.2

0.1 0.2 14.0 GeV NNLO+NLLA

comparison/fit

- Parton level in pert. prediction and MCs not equal, limits \bigcirc precision to present few %, pert. - non-pert. correlation?
- Universal $(\mathbf{\cdot})$

event shapes

$pQCD \oplus had. corr. models$

[Abbate, Fickinger, Hoang, Mateu, Stewart, Phys. Rev. D83 (2011) 074021, Davison, Webber, Eur. Phys. J. C59 (2009) 13-25]

- Simultaneous fit of pert. prediction and power correction (had. correction) not limited by parton level inconsistency, take pert. non-pert. correlation into account: much better precision limited by theory (and experiment)
- ☺ Most complete resummation so far with SCET
- \odot Not universal, observable specific calculation

$pQCD \oplus MC tuning$

MEPS@NLO: NLO (automated) matched to parton shower; merged for 2 → n processes; Hadronisation model (strings, clusters)

[Gehrmann, Höche, Krauss, Schönherr, Siegert, JHEP 1301 (2013) 144]

- Improved perturbative uncertainties, simultaneous fit (MC tuning) takes account of pert. non-pert. correlation
- \odot Universal
- ☺ 4-jet and 5-jet observables possible
- Solution NLO only, parton shower formally LL, in practice almost NLL, subleading logs? NNLO? Merging scale?

$pQCD \oplus MC$ tuning

[Banfi, McAslan, Monni, Zanderighi, JHEP 1505 (2015) 102]

NNLO matching? Needs $N^{3}LL$...

Alioli, Bauer, Berggren, Hornig, Tackmann, Vermilion, Walsh, Zuberi, JHEP 1309 (2013) 120]

Other theory aspects

- N³LO corrections?
 - Discussion about NNLO pp \rightarrow Z+jets implies this?
- NNLL corrections

- Maître, Sapeta, Eur. Phys. J. C73 (2013) 2663
- 1-T, T_{maj} , C, M_H , B_T , B_W , O, EEC; ARES
- Numerically important
- Jet resolution distributions?
- N³LL possible? Needed for NNLO, on the wishlist ...
- Theory error estimates
 - e.g. some NNLL corrections outside band of NNLO
 - Discuss procedure $(x_{\mu};x_{L}*/2)$?

- Field is theory driven
 - Exp. uncertainty on $\alpha_{\rm S}$ from 1-T ~1.3% (OPAL)
 - Combination with e.g. ALEPH possible
 - Much smaller in "global fits"
 - Still to be matched by theory+had'n uncertainty
 - Wishlist: N³LL, MC PS matching, N³LO
- Revisit systematic $\alpha_{\rm S}$ studies
 - Well understood data and errors
 - Several (many?) observables at same level of prediction
 - New/better observables? Let us know!