	Alternative Approach	

Extraction of the Strong Coupling α_s Through W-boson Hadronic Decays

[Workshop on high-precision α_s measurements: From LHC to FCC-ee]

Matej Srebre¹, David d'Enterria

CERN

matej.srebre@cern.ch, dde@cern.ch

October 2015

¹University of Ljubljana, currently master's student at LMU Munich

Introduction		Alternative Approach	
•			

Motivation

PDG'13 τ decays (N³LO) α_c(Q Lattice OCD (NNLO) △ DIS jets (NLO) Heavy Quarkonia (NLO) 0.3 e⁺e⁻ jets & shapes (res. NNLO) Extraction of α_s through comparison of Z pole fit (N³LO) ∇ $p(\vec{p}) \rightarrow jets (NLO)$ various experimental observables to different 0.2 perturbative QCD predictions. iets 0.1 $QCD \alpha_{s}(M_{z}) = 0.1185$ ± 0.0006 ¹⁰ O [GeV] 100 1000 **1** Hadronic τ decays: $R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau \to \nu_{\tau} - \sigma - \tau_{\tau})} = S_{\text{EW}} N_{C} (1 + \sum_{n=1}^{4} c_{n} \left(\frac{\alpha_{s}}{\pi}\right)^{n} + \mathcal{O}(\alpha_{s}^{5}) + \delta_{np}) (N^{3} \text{LO})$ **2** Lattice QCD: Various short-distance quantities: $K^{NP} = K^{PT} = \sum_{i=0}^{n} c_i \alpha_s^i$ (NNLO) **3** Hadronic Z decays: $R_Z = \frac{\Gamma(Z \to \text{hadrons})}{\Gamma(Z \to \ell)} = R_Z^{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_m + \delta_{np}) (N^3 \text{LO})$ 4 $e^+e^- \rightarrow q\bar{q}(g)$: Event-shapes, jet rates: $\frac{1}{\sigma}\frac{d\sigma}{dV} = \frac{dA}{dV}\hat{\alpha}_s + \frac{dB}{dV}\hat{\alpha}_s^2 + \frac{dC}{dV}\hat{\alpha}_s^3$ (NNLO) **5** $e^{\pm}p \rightarrow \text{hadrons}$ (PDF): $\sigma(\text{jet}), \frac{\partial}{\partial |z|} D_{i}^{h}(x, Q^{2}) = \sum_{i} \int_{x}^{1} \frac{dz}{2\pi} \frac{c_{x}}{2\pi} P_{ii}(\frac{z}{2}, Q^{2}) D_{i}^{h}(z, Q^{2})$ (NLO, NNLO)

- **6** $pp, p\bar{p} \rightarrow t\bar{t}$, jets (NNLO, NLO)
- 7 Hadronic W decays:
 - What is the theoretical and experimental status?
 - Can we extract α_s through hadronic W decays? With which precision?

Calculations	Alternative Approach	
•00		

Theoretical Calculation of $\Gamma_{\rm W}$ (hadronic)

The hadronic W-boson decay width has not been used so far for α_s extraction because:

- a complete N³LO/NNLO formula with all computed corrections [1] was not available until recently [2] (albeit with a few approximations),
- the 2% relative experimental uncertainty on Γ_W (hadronic) was significantly large compared to 0.1% of Γ_Z (hadronic).

We recalculated Γ_W (hadronic) through implementation in *MATHEMATICA* the $\mathcal{O}(\alpha_s^4)$ or N³LO formula using [2]:

$$\Gamma_{\mathrm{W}}(\mathsf{hadronic}) = \sum_{i=0}^{4} \Gamma_{\mathrm{QCD}}^{(i)} + \Gamma_{\mathrm{EW}}^{(1)} + \Gamma_{\mathrm{Mixed}}^{(2)} = \frac{\sqrt{2}G_{F}m_{W}^{3}}{4\pi} \left[\sum_{i,j} |V_{i,j}|^{2} \right] \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{EW}} + \delta_{\mathrm{Mixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{EW}} + \delta_{\mathrm{Mixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{EW}} + \delta_{\mathrm{Mixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{EW}} + \delta_{\mathrm{Mixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{EW}} + \delta_{\mathrm{Mixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{EW}} + \delta_{\mathrm{Mixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}} \right) + \left(1 + \sum_{k=1}^{4} \left(\frac{\alpha_{s}}{\pi} \right)^{k} + \delta_{\mathrm{Hixed}}$$

where

- $\Gamma_{\text{QCD}}^{(k)}$ is the leading order decay width and QCD corrections of order $\mathcal{O}(\alpha_s^k)$ and $k = 1, \dots, 4$,
- $\Gamma_{\rm EW}^{(1)}$ electroweak corrections of order $\mathcal{O}(\alpha)$,
- $\Gamma_{\text{Mixed}}^{(2)}$ mixed corrections of order $\mathcal{O}(\alpha \alpha_s)$.

[1] - A. Denner, B. Kniehl, J. Kühn, K. Chetyrkin, ...

[2] - D. Kara, Nucl. Phys. B 877, 3 (2013)

Calculations	Alternative Approach	
000		

Improvements with Respect to Previous Γ_W (hadronic) Calculations

In our calculations we carry out the following improvements compared to previous works:

- **I** implement finite quark masses in the dominant Γ_W (hadronic) terms: Born and first-order QCD corrections,
- **2** use NNLO α_s running instead of LO (between m_W and m_Z),
- **3** use current PDG world average values for parameters of the Standard Model $(\alpha_{\text{QED}}, G_{\text{F}}, m_{\text{q}}, m_{\ell}, m_{\text{W}}, m_{\text{Z}}, m_{\text{H}}, CKM matrix elements |V_{i,j}|),$
- **4** determination of associated theoretical and parametric uncertainties.

Calculations	Alternative Approach	
000		

Hadronic W-boson Decay Width - Numerical Results

Previous state-of-the-art [2]: $\Gamma_{\rm W}$ (hadronic) = (1458.820 ± 6 × 10⁻³) MeV,

 $\Gamma_{\rm W}({\rm hadronic}) = (1428.803 \pm 0.030_{\rm theor.} \pm 22.608_{\rm param.}) {
m MeV},$

 $\Gamma_{\rm W}({\rm hadronic}, V_{ij}V_{kj} = \delta_{ik}) = (1411.546 \pm 0.030_{\rm theor.} \pm 0.742_{\rm param.}) {
m MeV}.$

Partial width	$\Gamma^{(0)}_{ m QCD}$	$\Gamma^{(1)}_{ m QCD}$	$\Gamma_{\rm QCD}^{(2)}$	$\Gamma^{(3)}_{ m QCD}$	$\Gamma^{(4)}_{ m QCD}$	$\Gamma^{(1)}_{\rm EW}$	$\Gamma^{(2)}_{\rm Mixed}$
Γ _W (hadronic) of [2]	1408.980	54.087	2.927	-1.018	-0.245	-5.132	-0.779
Γ_W (hadronic)	1379.851	53.080	2.873	-1.000	-0.241	-5.002	-0.757
Γ_W (hadronic, $V_{ij}V_{kj} = \delta_{ik}$)	1363.186	52.439	2.838	-0.988	-0.238	-4.942	-0.749

Numerical values of the partial decay widths. All values given in MeV.

The following uncertainties are present in $\Gamma_{\rm W}$ (hadronic):

- **parametric uncertainty** (modifying all PDG parameters by $\pm \sigma$, adding changes in quadrature)
 - $\pm 22.608 \text{ MeV}$ (the dominant parametric uncertainty is V_{cs}),
 - ± 0.742 MeV for $V_{ij}V_{kj} = \delta_{ik}$ (dominated by m_W),
- higher-order corrections (assumed equal to Γ_Z , from N³LO to N⁴LO): ±0.0195 MeV,

■ non-perturbative uncertainties (assuming power-corrections of order $\mathcal{O}\left(\frac{\Lambda^4}{m_{\pi^4}^4}\right)$): $\pm 7 \times 10^{-8}$ MeV,

- finite quark masses beyond LO corrections: ± 0.0042 MeV,
- **mixed corrections from** [2]: ± 0.006 MeV.

	Extraction	Alternative Approach	
	•0		

Γ_W (hadronic) : Historical Data Versus Theory

Evolution of the PDG world average value of $\Gamma_{\rm W}^{\rm EXP}$ (hadronic) (current value is (1405 ± 29) MeV) by year compared to theoretically predicted decay widths.

	Extraction	Alternative Approach	
	00		

Extraction of α_s from Γ_W (hadronic)

Using the $\mathcal{O}(\alpha_s^f)$ W-boson decay width formula we can extract α_s by comparing it to the experimental value which is Γ_{w}^{EXP} (hadronic) = (1405 ± 29) MeV.

 $\Rightarrow \text{Current large parametric } (\pm 23 \text{ MeV})$ and experimental (±29 MeV) uncertainties on $\Gamma_{\rm W}(\text{hadronic})$ propagate into a huge α_s uncertainty $\sim 60\%$.

Experimental priorities should be:

- measure |V_{cs}| with better precision (current 1.6%),
- significantly reduce uncertainty of Γ_W(hadronic) measurement to a few MeV,
- reduce m_W uncertainty (now it propagates to ± 0.8 MeV on Γ_W (hadronic)).

	$\alpha_s(m_W^2)$	$\alpha_s(m_Z^2)$
Experimental CKM	$0.0691 \pm 0.0513_{\rm param.} \pm 0.0644_{\rm exp.}$	$0.0683 \pm 0.0509_{\rm param.} \pm 0.0638_{\rm exp.}$
Unit CKM, $V_{ij}V_{kj} = \delta_{ik}$	$0.1071 \pm 0.0017_{\rm param.} \pm 0.0664_{\rm exp.}$	$0.1053 \pm 0.0016_{\rm param.} \pm 0.0657_{\rm exp.}$

	Alternative Approach	
	0000	

Alternative Approach: α_s Extraction via BR_W(hadronic) = $\frac{\Gamma_W(hadronic)}{\Gamma_W(total)}$

 Γ_W (hadronic) has a 2% experimental uncertainty, BR_W(hadronic) has an uncertainy of 0.4%.

 $\Rightarrow \text{ We try } \mathsf{BR}_{W}(\mathsf{hadronic}) = \frac{\Gamma_{W}(\mathsf{hadronic})}{\Gamma_{W}(\mathsf{total})} \text{ to extract } \alpha_{s} \text{ instead of } \Gamma_{W}(\mathsf{hadronic}).$

For the total decay width Γ_W (total) we use the ZFitter NNLO (includes up to $\mathcal{O}(\alpha_s^3)$ QCD, $\mathcal{O}(\alpha)$ electroweak and $\mathcal{O}(\alpha \alpha_s)$ mixed corrections) fitted result by [3] which is parametrized as

 $\Gamma_{\rm W}({\rm total}) = G_W^0 m_W^3 \quad {\rm and} \quad G_W^0 = 4.0279 \times 10^{-6} (1 + 0.00095 x_H - 0.0024 x_H^2 + 0.0016 x_H^3 + 000065 x_s) \; {\rm GeV}^{-2}, \label{eq:GW}$ where $x_s = f(\alpha_s), \; x_H = f(m_H).$

We also computed the associated parametric uncertainties as done for Γ_W (hadronic).

Γ_W (hadronic)	(1428.803 \pm 22.638) MeV
Γ_W (hadronic, $V_{ij}V_{kj} = \delta_{ik}$)	$(1411.546 \pm 0.772) \; { m MeV}$
$\Gamma_W(total)$	$(2093.591 \pm 1.172_{\rm param.})~{\rm MeV}$
$BR_W(hadronic)$	$0.6825 \pm 0.0108_{ m param.}$
$BR_W(hadronic, V_{ij}V_{kj} = \delta_{ik})$	$0.67422 \pm 0.00003_{\mathrm{param.}}$
$BR_W(hadronic)^{\mathrm{EXP}}$	0.6741 ± 0.0027

[3] - G. C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, JHEP 111, 068 (2011)

	Alternative Approach	
	0000	

BR_W (hadronic) : Historical Data Versus Theory

Evolution of the PDG world average value of BR_W (hadronic) (current value is 0.6741 \pm 0.0027) by year compared to theoretically predicted decay widths.

	Alternative Approach	
	0000	

Alternative Approach: α_s Extraction via $BR_W(hadronic) = \frac{\Gamma_W(hadronic)}{\Gamma_W(total)}$

We can extract α_s by comparing the theoretical hadronic branching ratio formula to the experimental world average value

	$\alpha_s(m_W^2)$	$\alpha_s(m_Z^2)$	$\Delta \alpha_s(m_W^2)$
Experimental CKM	$-0.0030 \pm (> 0.1505_{param.}) \pm 0.0353_{exp.}$	/	/
Unit CKM	$0.1189 \pm 0.0004_{\mathrm{param.}} \pm 0.0433_{\mathrm{exp.}}$	$0.1167 \pm 0.0004_{\mathrm{param.}} \pm 0.0430_{\mathrm{exp.}}$	±37%

	Alternative Approach	
	0000	

Extra: Indirect Determination of $|V_{cs}|$

The large experimental BR_W (hadronic)^{EXP} uncertainty precludes an accurate extraction of α_s , but we can use BR_W (hadronic)^{EXP} to determine $|V_{cs}|$ (fixing α_s to world average).

Extraction method	$ V_{cs} $ value
Γ_W (hadronic)	$0.969 \pm 0.002_{\rm param.} \pm 0.021_{\rm exp.}$
BR_W (hadronic)	$0.973 \pm 0.002_{\rm param.} \pm 0.004_{\rm exp.}$

 $\Rightarrow \text{We can extract } |V_{cs}| \text{ with an}$ uncertainty of 0.6% compared to 1.6% of the experimental measurement $|V_{cs}|^{\text{EXP}} = 0.986 \pm 0.016.$

	Alternative Approach	Conclusion
		•0

Future Perspectives: LHC & FCC-ee

To determine α_s with a higher precision we need more precise measurement of Γ_W (total) and/or BR_W(hadronic) with reduced uncertainties.

- Uncertainties at LHC (5 × 10⁵ high- m_T W's at $\sqrt{s} = 8$ TeV, 20 fb⁻¹):
 - -Statistical: \sim 3 MeV (30 MeV at Tevatron, with 5 \times 10 3 high- m_T W's)
 - -Systematics: \sim 15 MeV (down from \sim 40 MeV at Tevatron, reduced PDF uncertainties)

Improved result: $\Gamma_{\rm W}$ (hadronic) ~ (1429 \pm 12) MeV (i.e. 0.8% uncertainty instead of 2%)

	$\alpha_s(m_W^2)$	$\Delta \alpha_s(m_W^2)$
Unit CKM	$0.1208 \pm 0.0004_{\rm param.} \pm 0.0275_{\rm exp.}$	±23%

 \Rightarrow Improved Γ_W (hadronic) at LHC allows to extract α_s with $\sim 23\%$ uncertainty.

• Uncertainties at FCC-ee (5 × 10⁸ W's at $\sqrt{s} = m_W$): -Statistical: ~ 0.005% (0.4% at LEP with 8 × 10⁴ W's)

Final result: BR_W (hadronic) $\sim 0.67410 \pm 0.00003$

	$\alpha_s(m_W^2)$	$\Delta \alpha_s(m_W^2)$
Unit CKM	$0.1208 \pm 0.0004_{\rm exp.}$	±0.3%

 \Rightarrow FCC-ee would provides us a value for α_s with a relative uncertainty of \sim 0.3%.

Calculations 000		Conclusion O

Summary

 Γ_W (hadronic) = (1411.546 \pm 0.772) MeV, BR_W(hadronic) = 0.67422 \pm 0.00003.

 $\Rightarrow \text{Current experimental } \Gamma_W(\text{hadronic}), \\ \text{BR}_W(\text{hadronic}) \text{ and } |V_{cs}| \text{ uncertainties} \\ \text{preclude precise extraction of } \alpha_s.$

 \Rightarrow Improvements at LHC, and in particular FCC-ee, will allow one to incorporate Γ_W (hadronic) and BR_W(hadronic) into the PDG α_s .

	$\alpha_s(m_W^2)$	$\alpha_s(m_Z^2)$	$\Delta \alpha_s(m_W^2)$
Today (Unit CKM)	$0.1189 \pm 0.0004_{\mathrm{param.}} \pm 0.0433_{\mathrm{exp.}}$	$0.1167 \pm 0.0004_{\mathrm{param.}} \pm 0.0430_{\mathrm{exp.}}$	±37%
LHC (Unit CKM)	$0.1208 \pm 0.0004 \mathrm{param.} \pm 0.0271 \mathrm{exp.}$	$0.1185 \pm 0.0004_{\mathrm{param.}} \pm 0.0260_{\mathrm{exp.}}$	±23%
FCC-ee	$0.1208 \pm 0.0004_{exp}$.	$0.1185 \pm 0.0004_{exp}$.	±0.3%

 \Rightarrow FCC-ee will allow us to measure α_s with \sim 0.3% uncertainty.

	Alternative Approach	Conclusion

Thank you. Any questions?

Calculations	Alternative Approach	Conclusion

Backup slides

	Alternative Approach	Conclusion

Experimental Hadronic Width Measurement

Experimental hadronic Γ_{W} (hadronic) from Γ_{W} (total) via BR_W(hadronic)²:

$$\begin{split} \Gamma_{\rm W}(\text{hadronic}) &= \Gamma_{\rm W}(\text{total}) \times \mathsf{BR}_{W}(\text{hadronic}) \\ &= (2085 \pm 42) \times (0.6741 \pm 0.0027) \ \mathrm{MeV} \\ &= (1405 \pm 29) \ \mathsf{MeV} \ (\text{i.e. } 2\% \ \text{uncertainty}) \end{split}$$

- Γ_{W} (total) in $e^+e^- \rightarrow W^+W^- \rightarrow 4q, 2q + \ell\nu$ Where: LEP ($\sqrt{s} = 161 - 209 \text{ GeV}$) & FCC-ee ($\sqrt{s} = 161, 240, 350 \text{ GeV}$) How: Maximum-likelihood fit of m_{W} Breit-Wigner with Γ_{W} (total) as free parameter.
- $\Gamma_{W}(\text{total})$ in $p\bar{p}$, $pp \rightarrow W + X$, with $W \rightarrow e\nu$, $\mu\nu$ Where: Tevatron($\sqrt{s} = 1.8, 1.96 \text{ TeV}$) & LHC($\sqrt{s} = 7, 8, 13, 14 \text{ TeV}$) How: Maximum likelihood fit of high $m_{T}(W)$ tail with $\Gamma_{W}(\text{total})$ as free parameter (and via $\sigma(W)/\sigma(Z)$ ratios).

 $^{^2 0.4}$ % uncertainty measured in e^+e^-

	Alternative Approach	Conclusion

LEP-2 W-boson Width Measurement [arXiv:1302.3415]

- $e^+e^-
 ightarrow W^+W^-
 ightarrow 4q, 2q + \ell
 u$ at $\sqrt{s} = 161 209 \; {
 m GeV}$
- \blacksquare Statistics: N(W's in all channels / experiments) \sim 40.000 pairs
- Binned likelihood fit to m_W Breit-Wigner with Γ_W (total) as free parameter:

Source	Systematic Uncertainty in MeV			
		on $m_{\rm W}$		
	$q\overline{q}\ell\nu_{\ell}$	qqqq	Combined	
ISR/FSR	8	5	7	6
Hadronisation	13	19	14	40
Detector effects	10 8 9		23	
LEP energy	9	9	9	5
Colour reconnection	-	35	8	27
Bose-Einstein Correlations	-	7	2	3
Other	3	10	3	12
Total systematic	21	44	22	55
Statistical	30	40	25	63
Statistical in absence of systematics	30	31	22	48
Total	36	59	34	83

Final result: $\Gamma_{\rm W}(\text{total}) = (2495 \pm 63_{\rm stat.} \pm 55_{\rm syst.}) \,\,{\rm MeV}$

	Alternative Approach	Conclusion

CDF W-boson Width Measurement [PRL 100, 071801 (2008)]

- $p\bar{p} \rightarrow W + X$, with $W \rightarrow e\nu, \mu\nu$ at $\sqrt{s} = 1.96$ TeV $(L_{int.} \sim 350 \ pb^{-1})$
- Statistics: N(W's)=3.436+2.619 with $90 < M_T < 200$ GeV

 $\sqrt{2(\pi\ell + \nu)} = \frac{2\ell}{2} (\frac{2}{2} \nu)$

Binned likelihood fit to (90 $< M_T < 200$ GeV) spectra with Γ_W (total) as free parameter:

ground

Fit Region

150

M- (uv)(GeV)

$$MT_T = \sqrt{2}(p_T p_T = p_T \cdot p_T)$$

Fit Regio

M₊ (ev)(GeV)

Events/5 GeV

10²

TABLE I. The sources of uncertainty (in MeV) on Γ_W for the $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ measurements. If there is a correlated source of error between the two measurements its contribution to each measurement is listed in the third column, labeled C.

Source	$\Delta \Gamma_W^{e\nu}$	$\Delta \Gamma_W^{\mu\nu}$	С
Statistics	60	67	
Lepton E or p scale	21	17	12
Lepton E or p resolution	31	26	
Electron energy loss simulation	13		
Recoil model	54	49	
p_T^W	7	7	7
Backgrounds	32	33	
PDFs	20	20	20
M _W	9	9	9
EW radiative corrections	10	6	6
Lepton ID/acceptance	10	7	
Total systematic	79	71	27
Total (statistic + systematic)	99	98	27

Final result: $\Gamma_{\rm W}(\text{total}) = (2032 \pm 45_{\rm stat.} \pm 57_{\rm syst.}) \text{ MeV}$

100

	Alternative Approach	Conclusion

Tevatron W-boson Width Combined [arXiv: 1003.2826]

- CDF + D0 combined (BLUE method) $p\bar{p} \rightarrow W + X$, with $W \rightarrow e\nu, \mu\nu$ at 1.8 and 1.96 TeV.
- Improved likelihood fits to M_T spectra with updated underlying parameters:

	Run-I			Run-II	
	CDF-Ia	CDF-Ib	D0-Ib	CDF	D0
Γ_W (published)	2,110	2,042.5	2,231	2,032	2,028.3
Total uncertainty (published)	329	138.3	172.8	72.4	72
M_W used in publication	80,140	80,400	80,436	80,403	80,419
Correction to Γ_W from M_W	-78	0.3	11.1	1.2	6.0
$\Gamma_{\rm W}$ (corrected)	2,032	2,042.8	2,242.1	2,033.2	2,034.3
Total uncertainty(corrected)	329.3	138.3	172.4	72.4	71.9
Uncorrelated uncertainty (corrected)	327.6	136.8	167.4	68.7	68.5
PDF uncertainty(published)	0	15	39	20	20
PDF uncertainty (this analysis)	15	15	39	20	20
EWK RC uncertainty	28	10	10	6	7
M_W uncertainty (published)	0	10	15	9	5
M_W uncertainty (this analysis)	7	7	7	7	7
M_W extrapolation	26	0	4	0	2

Final result: $\Gamma_{W}(\text{total}) = (2046 \pm 49) \text{ MeV} \frac{\pm 39 \text{ MeV} (\text{stat.})}{\pm (20+7.4+7.4) \text{ MeV}(\text{PDF} + m_W + \text{EW. corr.})}$

	Alternative Approach	Conclusion

W-boson Width: Tevatron + LEP Combined [PDG]

■ World average of all LEP + Tevatron measurements:

		Conclusion

List of References

A. Denner, B. Kniehl, J. Kühn, K. Chetyrkin, ...

Dominik Kara Corrections of Order $\alpha \alpha_s$ to W boson decays, Nucl. Phys. B 877, 3 (2013)

G. C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, *The MSSM confronts the precision electroweak data and the muon* g - 2, JHEP 111 (2011), 068

K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)