

The gain in THGEM multipliers and its time-evolution

M. Alexeev^a, R. Birsa^b, F. Bradamante^c, A. Bressan^c, M. Büchele^d, M. Chiosso^a,
P. Ciliberti^c, S. Dalla Torre^b, S. Dasgupta^c, O. Denisov^e, V. Duic^c, M. Finger^f,
M. Finger Jr^f, H. Fischer^d, B. Gobbo^b, M. Gregori^b, F. Herrmann^d, K. Königsmann^d,
S. Levorato^b, A. Maggiora^e, N. Makke^c, A. Martin^c, G. Menon^b, K. Novakova^{b,g‡},
J. Novy^f, D. Panzieri^h, F.A. Pereiraⁱ, C.A. Santos^b, G. Sbrizzai^c, P. Schiavon^c,
S. Schopferer^d, M. Slunecka^f, F. Sozzi^b, L. Steiger^{b,g§}, M. Sulc^g, S. Takekawa^a,
F. Tessarotto^b and J.F.C.A. Velosoⁱ

based on the M. Alexeev et al. 2015 JINST 10 P03026 also published as RD51-NOTE-2015-001

INTRODUCTION

It is a SUMMARY of our studies about gain in THGEMs

Its dependence on geometrical parameters

Its time evolution

- Relevant to evaluate its impact in experiments
- Gain time-evolution observed in detectors with open insulator surfaces (larocci tubes, MSGCs, GEMs, ...)

Part of the material has already been shown in past RD51 meetings

METHOD

- Single layer
- Gas: Ar : CO₂ = 70 : 30
- X-ray source
- measuring anode amplitude and/or
- the current absorbed by all the electrodes
- ~50 different geometries studied over yaers → here a summary of the conclusions with examples

TIME-EVOLUTION OF THE GAIN: 2 DISTINCT PHENOMENA

1. Fast evolution (~ 1'-20')

- Due to charge accumulation at the free dielectric surface
- Time duration depends on open surface, HV, irradiation rate
- Due to the accumulated charge: E reduction
 - If HV is applied too quickly, discharges at switching on
- Qualitatively understood
- Quantitatively: simulation approaches started
 - M. Alfonsi et al., Nucl. Instr. and Meth. A671 (2012) 6
 - P.M.M. Correia et al., JINST 9 (2014) P07025.

	THGEM geometry: type	pitch mm	diameter mm	thickness mm	rim annulus width μm
	А	0.2	0.4	0.2	40
GAIN	300 - 250 - 200 - 150 - 100 - 0 50 100	150 Lin	200 250 ne [second	25 ⁰⁰ 0000000000000000000000000000000000	

TIME-EVOLUTION OF THE GAIN: **2 DISTINCT PHENOMENA**

Long-term time-evolution (d) 2.

- It takes one or more days
- Δ Gain covers a large range: x 1.2 - 5
- The gain can rise/decrease vs time

Understanding?

- Due to <u>charge mobility inside the</u> dielectric (?)
- □ See later

Continuos irradiation (X-ray)

THGEM geometry: type	pitch mm	diameter mm	thickness mm	rim annulus width μm
В	0.8	0.4	0.4	100
С	0.8	0.4	0.4	0

5

GAIN & RIM

- Large rim : ~ 100 μm
 - introduced to obtain large gains, up to 1 order of magniture more !
- Small rim (< 20 μm) or no rim
 - Largely reduced gain-evolution

THGEM geometry:	pitch	diameter	thickness	rim annulus width
type	mm	mm	mm	μm
В	0.8	0.4	0.4	100
С	0.8	0.4	0.4	0

RIM & CHARGE COLLECTION

Up to E_drift as high as 3 kV/cm good resolution is not reached in spite of the large gain

→ incomplete electron collection is suggested

THGEM geometry:	pitch	diameter	thickness	rim annulus width
type	mm	mm	mm	μm
В	0.8	0.4	0.4	100
С	0.8	0.4	0.4	0
E	0.8	0.4	0.4	10

RD51 miniweek, June 2015

ΔV [V]

ΔV [V]

INFN

LONG-TERM GAIN-EVOLUTION: A QUALITATIVE MODEL

- A SLOW movement of ions in the PCB fibreglass when power is applied (not dielectric polarization)
- EFFECTS:
- i. The field inside a THGEM hole is modified due to the presence of a net charge distribution along the cylindrical hole wall
- ii. at the PCB faces, charge migration from the uncoated rim region toward the metallized area takes place
 - **REMARK:** the charge accumulation is screened in the metallized region, not at the uncoated rim annulus and along the hole wall
- <u>no rim or small rim THGEMS</u>: the charge distribution due to (i) generates an electric field opposite to bias one, while effect (ii) is absent or non dominant
 → gain decreases versus time
- <u>large rim THGEMS</u>: the net charge at the rim surface due to effect (ii) reinforces the bias electric field \rightarrow gain increases vs time
 - When the detector is irradiated, the accumulated charge distribution partially compensates this gain

