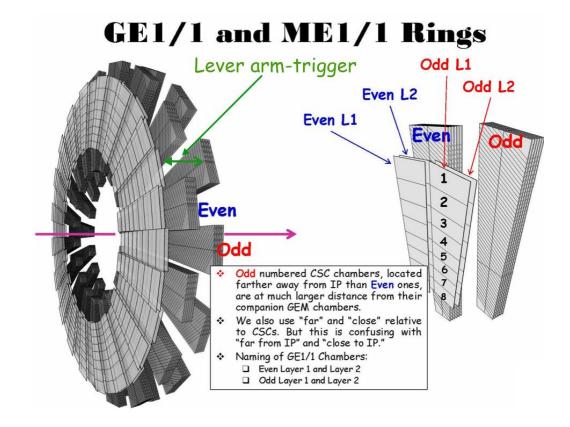


CMS GE1/1 update

Summary

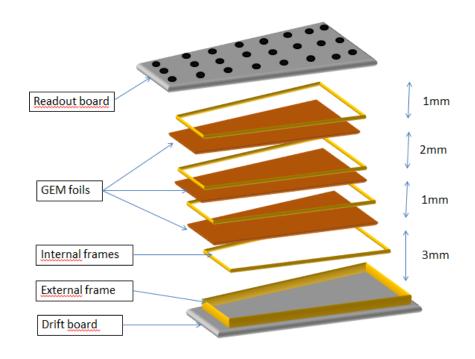
- Introduction to GE1/1 detector
- Gain uniformity test
- Aging study
- Quality control stages
- Slice test

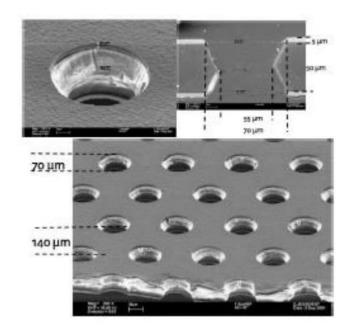
Introdction to GE1/1


- Need to add a redundant muon detector system in CMS for the high η region. In the present day we only rely in CSC.
- For the HL-LHC the CSC will not be enough
- GE1/1 has recently been approved by LHCC
- Advantages of GE1/1:
 - Relative low cost
 - High rate capability
 - It has been proven to be radiation hard. No gain loss for doses up to 11 mC/cm²
 - Spatial resolution of \sim 100 μ m and time resolution of \sim 4-5ns.
 - Efficient (98%)
 - Gas mixture is Ar CO2 CF4 45:15:40 which is non flammable

Introduction to GE1/1

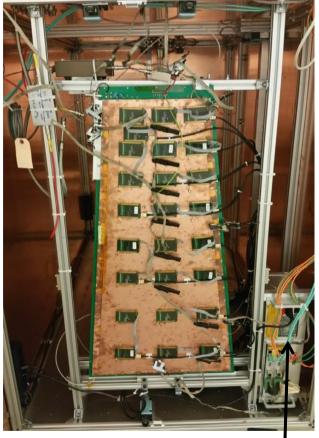
- What is GE1/1?
 - Triple GEM detector that will be applied in the endcaps of CMS for the 1.55 < $|\eta|$ < 2.18 region
 - A total of 144 chambers placed in couples in superchambers
 - Each superchamber will host 2 chambers a long version and a short version
 - After several prototypes we are currently testing the 6th generation of GE1/1 chambers. To the present day we only have 2 long version prototypes, the short version prototypes are still under construction.





Introdction to GE1/1

- GE1/1 uses GEM foils made of 5:50:5µm for Cu:Kapton:Cu with single mask technology
- Holes geometry is 70μm with a pitch between holes of 140 μm
- Gap configuration between drift and foils is 3/1/2/1 (mm)

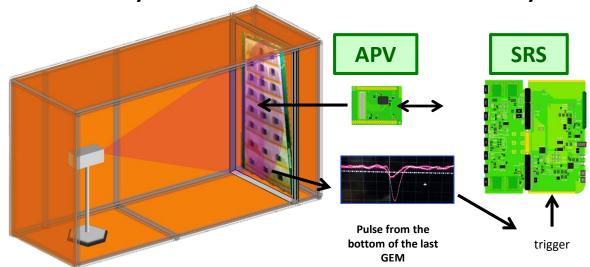


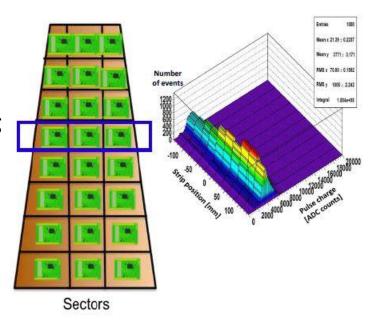
Gain uniformity test

SRU GAS IN/OUT NIM (trigger) electronics

Preamplifier

Preamplifier connected to the bottom of GEM 3


SRS



Gain uniformity test

- DAQ: DATE software
 - Minimum 1'000'000 events (100Gb): multiple files
 - Rate limitation while saving data = 50 Hz. This means it takes 5 to 6 hours
- Current status:
 - Qualitative analysis → modification of new code to analyse results is ongoing

Gain uniformity test

Measurements:

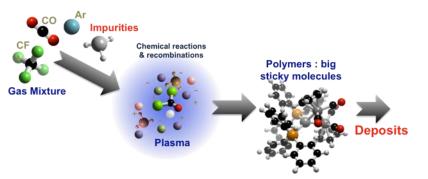
- GE1/1 IV (700000 events)
- GE1/1 IV GIF (700000 events)
- GE1/1 III (500000 events)
- GE1/1 IV Ghent (700000 events)
- GE1/1 VI 002 long (640000)

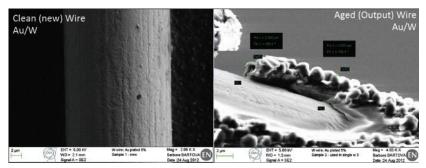
Operation conditions:

- Gas: Ar/CO2/CF4 45:15:40 (2l/h)
- Gas: Ar/CO2 70:30 (2l/h)
- Gain=2000

With these conditions we get no saturation, a good position of the peak and good trigger signal

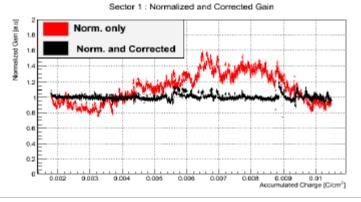
Time scale


- One day to take measurements
- One to treat data (zero suppression and clusterisation)
- Data analysis is still ongoing
- Including installation it is necessary 2 -3 days per detector.



Aging study

- GE1/1 chambers must be able to perform properly for a long period of time ~ 20 years
- Classical aging due to outgassing affects the gain of the detector, its uniformity, may increase the probability of destructive discharges, degrade resolution of space/time and rate capability



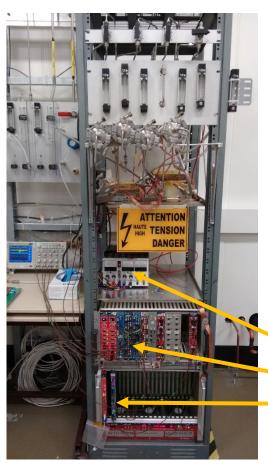
- In the last 2 years 2 chambers have been tested GIF facility.
- Now one of the chambers has been moved to the new GIF ++ facility and tests started over a month ago.

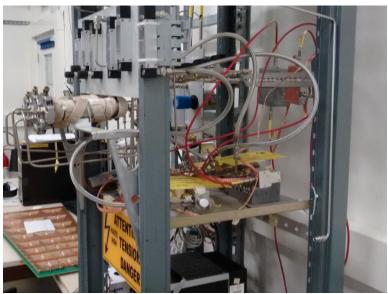
In addition to studying the performance of GE1/1 chambers materials are also tested individually in the

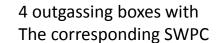
outgassing setup placed in the TIF

Aging study

- GE1/1-IV in operation since 23rd of April (almost 2 months)
- Average readout current : 450 nA
- Accumulated charge approx. 8mC/cm² on lower sectors (1-4) 5.8 mC/cm² on higher sectors
- Long term operation
 - 1 year for GE1/1
 - 2-3 years for ME0


GIF++ = 10xGIF Expected 30xGIF But distance+lens+gain



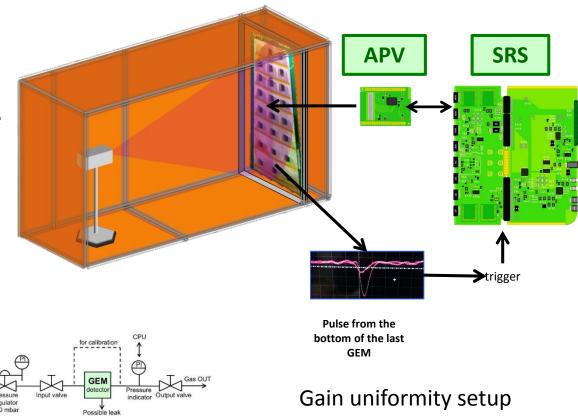

Aging study

Outgassing setup

Readout electronics

- -Trigger Signal
- -ADC (VME)

3 materials being tested right now PCB FR4 + Soldering mask (Elpemer 2467) Silver Glue (MSDS_Polytec_EC) Krempel KDF 0/25/25 HT


Quality control stages

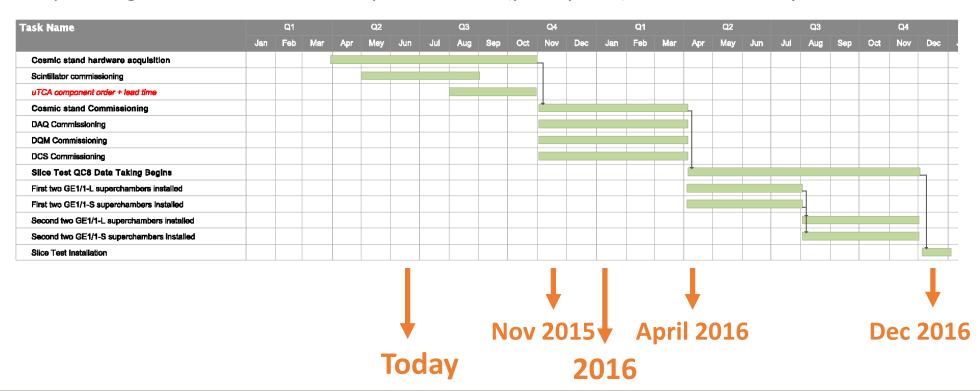
- In order to qualify every chamber that will go to CMS it must pass a series of quality control stages:
 - Leakage current and stability of foils
 - Gas leakage test
 - High voltage test
 - Gain calibration and gain uniformity tests
 - Assembly of super chambers in the aluminium frame
 - Efficiency characterisation of superchambers in CS

Cosmic Stand

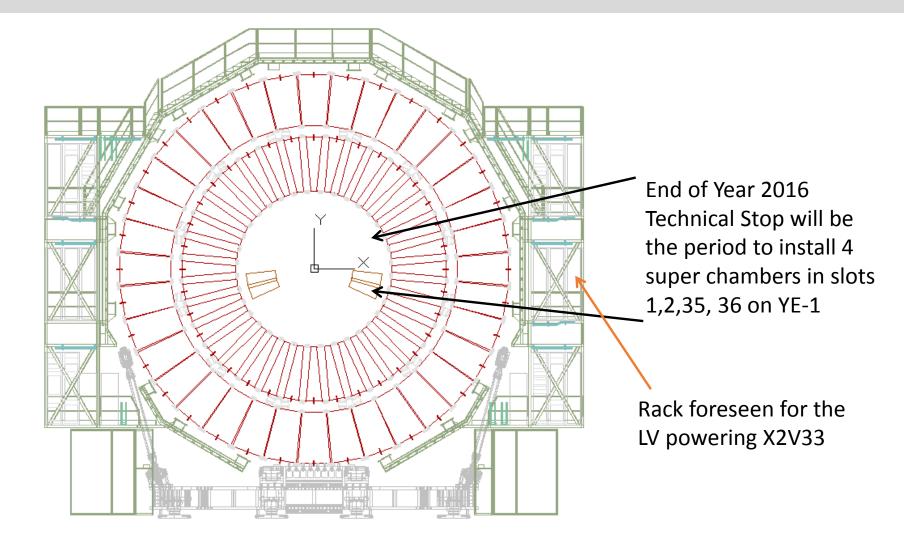
Gas leakage preliminary setup

Quality control stages

- The CMS GEM collaboration has 6 production sites
- All QC stages will be done in all the different sites except for the superchamber assembly and testing the superchambers in the cosmic stand. These 2 last stages will take place only here at CERN.
- It is critical to establish a standardised QC procedure that can be transferred to every production site.


	BARC	INF-Bari	CERN	FIT	INFN-LNF	UGent
Cleanroom		Χ	X	X	X	
Leakage current setup		Χ	X	X	X	X
X-ray setup	X	X	X	X	X	X
Shipping logistics	X	Χ	X	X	Χ	X
GE1/1 assembly	X	Χ	X	X	X	X
Past experience	X	Χ	X	X	Χ	Χ

Slice test


- The slice test will be the first time GE1/1 chambers will be installed in CMS.
- A total of 4 superchambers will be installed, 2 long versions and 2 short versions.
- The slice test will take place during the 2016-2017 year end technical stop of the LHC
- We are planning to have the slice test superchambers (plus spares) manufactured by the end of 2015

Slice test

