Charge collection in GridPix detectors as a function of pixel pad size

Kevin Heijhoff

2015-06-08

- GridPix model
- How I run Garfield++ and field simulations
- Avalanche spread
- Refine model
- Charge collection

Model

Meshing and field simulation

- Use mirror symmetries to reduce number of finite elements in field and detector simulation
- Boundary condition on planes of mirror symmetry: $\nabla V \cdot \hat{n} = 0$
- Only simulate fields in shaded region

Meshing and field simulation

- We mesh the geometry with Gmsh
 - 3D finite element grid generator (free software)
- We use Elmer to simulate the field
 - Open source multiphysical simulation software mainly developed by CSC-IT Center for Science
- To save CPU, the mesh only extends up to 123 µm. Above that, the field is constant.

x [µm]

Avalanche simulation

Kevin Heijhoff (Nikhef)

Charge collection in GridPix

Secondary electron endpoints

- $\bullet\,$ For this model, charge collection efficiency is 26 % for a 12 μm diameter pad
- However, in a more realistic model, not all electrons end on electrodes

Elevated pad

Elevated pad

Mesh

x [µm]

Kevin Heijhoff (Nikhef)

Charge collection in GridPix

Shockley-Ramo theorem

• Instantaneous current on pad given by

$$I = \frac{-q\vec{E_w}\cdot\vec{v}}{1\,\mathrm{V}}$$

• Integrated signal:

$$\int_{t_a}^{t_b} I \, dt = \frac{q}{1 \,\mathrm{V}} \left[\phi\left(\vec{r_b}\right) - \phi\left(\vec{r_a}\right) \right]$$

- Charge induced by electron: $Q_{e^-} = rac{-e}{1 \mathrm{V}} \left[\phi \left(\vec{r_1}
 ight) \phi \left(\vec{r_0}
 ight)
 ight]$
- Charge induced by ion: $Q_{ion} = \frac{e}{1V} \left[0 V \phi(\vec{r_0}) \right]$
- Total induced charge: $Q = Q_{e^-} + Q_{ion} = rac{-e}{1 \mathrm{V}} \phi\left(\vec{r_1}
 ight)$

Weighting potential

Realistic Timepix3 model

- Make an approximation of TPX3 top metal layers
- Pad is actually 18 μm in diameter, not 12 μm

Realistic Timepix3 model

Realistic Timepix3 model

E-field Mesh 120 W-field 100 60 80 40 60 z [hm] z [hm] 20 40 0 20 -20 -40 -20 -20 Z Y X -20 -10 10 20 0

x [µm]

 Induced charged lower due to protection layers above, and metal layers around pad

Conclusions:

- We might see only a small part of the avalanche.
- Bigger pad size can increase the (charge-integrated) signal

Outlook:

- Model amplifier response and noise (Currently)
- Simulate how bigger pads affect noise
- See what happens when we put a bigger pad above top metal layers

Time dependent signal

Speeding up Garfield++

- FindElement function was taking up > 90 % of computation time
- Measure average time to find elements along an electron track consisting of 7695 points
- Garfield++'s FindElement: $\mathcal{O}(n)$
- Improved FindElement: $\mathcal{O}(\log n)$
- Speedup for my mesh:
 - FindElement: \sim 62 times faster
 - Garfield++: \sim 25 times faster

Kevin Heijhoff (Nikhef)

- Separate drift and gain process to decrease computation time
 - Drift electrons to grid plane
 - Partition grid hole into cells of equal area and simulate avalanches for each of them
- Convolve the results

Drift process

- Generate electrons uniformly in the region
 0 < x < 27.5 μm, 0 < y < x, 63 μm < z < 1 cm and
 drift them to the grid
- Most electrons arrive at neighbouring pixel cells and are transformed back to the center pixel
- This is equivalent to generating electrons in the region -∞ < x < ∞, -∞ < y < ∞, 63 µm < z < 1 cm and only looking at electrons arriving at a single pixel cell
- 45 out of 100 000 electrons hit the grid

Charge collection in GridPix

Kevin Heijhoff (Nikhef)

Gain process

For each cell:

- Simulate 1000 avalanches at center of cell
- Store a 2D histogram containing electron positions at pixel plane
- Store all gain values
- Note that average pixel plane position (x
 , y
) depends on cell

Convolving drift and gain results

For each drifted electron:

- Draw random gain N from corresponding cell
- Draw N ($\Delta x, \Delta y$) pairs from cell hit map
- Secondary electrons hit the pixel plane at $(x + \Delta x, y + \Delta y)$

Gain variation

- Gain depends on where the electron goes through the grid hole
- A factor two difference over the grid hole

Gain histograms

Crosstalk

Weighted r distribution

