Performance studies of Micromegas Detectors with Pad-Readout RD51 Mini Week, 12th June 2015

Andreas Düdder, Tai-Hua Lin, Matthias Schott, Chrysostomos Valderanis

Institute of Physics Johannes Gutenberg-University Mainz

Outline

MM-Pad

A. Düdder

Motivation

Detector design

Measurements

Conclusion

1 Motivation

2 Detector design

3 Measurements

Motivation

MM-Pad

A. Düdder

Motivation

Detector design

Measurements

Conclusion

Ambiguities

 high rates lead to ambiguities in hit association in different layers of the chamber
→ Pad readout structure to solve ambiguities

Design of the Pad Detectors

- MM-Pad
- A. Düdder
- Motivation
- Detector design
- Measurements
- Conclusion

- 10*10 cm active area
- 500 pads in 20*25 grid
- pad size: 5*4 mm²
- distance between pads: 300 μ m
- readout connection on backside to allow scalable design

Couplings in the Pad Detectors

MM-Pad

A. Düdder

Motivation

Detector design

Measurements

Conclusion

Resistive Coupling (RC)

- standard capacitive coupling between resistive layer and readout layer
- charge spreads over resistive layer
- resistive coupling between resistive layer and readout layer
- independent grounding of each resistive pad over readout layer

Realization of the Pad Detectors

MM-Pad

A. Düdder

Motivation

Detector design

- Measurements
- Conclusion

Capacitive Coupling

• resisitive layer in maze shape to reduce charge spread between pads

Resistive Coupling

 intermediate resistive layer as connection between resistive pad (yellow) and readout pad (green)

Measurements

MM-Pad

A. Düdder

Motivation

Detector design

Measurements

Conclusion

Setup

- Ar:C0 $_2$ (93:7) with 3 l/h
- readout: APV25 with SRC and mmdaq
- source: Amptek Mini X-Ray tube

Voltage Scan

- drift voltage: 100 V, 200 V, 300 V, 400 V
- amplification voltage:
 - capacitive pad: 475 V, 500 V, 525 V
 - resistive pad: 450 V, 475 V, 500 V

High Rate Test

• current in x-ray tube: 5 $\mu {\rm A},$ 50 $\mu {\rm A},$ 100 $\mu {\rm A},$ 150 $\mu {\rm A},$ 200 $\mu {\rm A}$

Signal Shape

capacitive coupling

MM-Pad

A. Düdder

Motivation

Detector design

Measurements

Conclusion

resistive coupling

Voltage Scan - Maximum Charge

- rise of charge with amplification voltage
- drop of charge with rise of drift voltage \rightarrow reduced mesh transparency
- higher charge in capacitive coupled detector

Voltage Scan - Number of Cluster

- less cluster for smaller charge
- difference in number of cluster between both detectors correlated with difference in charge

Voltage Scan - Cluster Size

- rise of cluster size with maximum charge
- larger cluster size in capacitive coupled detector \rightarrow spread in resistive layer

Voltage Scan - Decay Time

- correlation of decay time with maximum charge
- less difference for last two drift voltages

JGU

High Rate Test

MM-Pad mean cluster size A. Düdder mean number of cluster 25 1.8 2 CC-Pad 1.6 CC-Pad ·· RC-Pad ·· & RC-Pad design V_n = 300 V V., = 300 V Measurements V_{A.RC} = 450 V V_{A,RC} = 450 V 1.2 V_{A.CC} = 465 V V_{A,CC} = 465 V 100 200 Ι_{κ-τay} [μ Α] 200 Ι_{κ-τίκγ} [μ Α] (a) number of cluster (b) cluster size ue [22 us] duster charge [ADC Werte] ···•· CC-Pad · CC-Pad decay tim ·· A RC-Pad ·* RC-Pad 9.4 Vn = 300 V V_D = 300 V V_{A.RC} = 450 V 9. V_{A,RC} = 450 V 12 V_{ACC} = 465 V V_{A,OC} = 465 V 9.3 9.3 11 9.25 200 І_{х-тау} [µ А] t ay [L A] (c) cluster charge (d) decay time

Conclusion

MM-Pad

A. Düdder

Motivation

- Detector design
- Measurements

Conclusion

- ideal drift voltage for high rate usage: 300 V
- amplification voltage has to be adjusted to incident radiation
- smaller cluster size in resistive detector \rightarrow no charge spread in decoupled resistive layer
- better high rate capability of resistive detector:
 - faster decay time
 - more stable cluster reconstruction

JGU

CC-Pad - Voltage Scan - Max. Charge

JGU

CC-Pad - Voltage Scan - Cluster Number

MM-Pad

JGU

CC-Pad - Voltage Scan - Cluster Size

JGU

CC-Pad - Voltage Scan - Decay Time

MM-Pad

JGU

RC-Pad - Voltage Scan - Decay Max. Charge

MM-Pad

JGU

RC-Pad - Voltage Scan - Cluster Number

MM-Pad

JGU

RC-Pad - Voltage Scan - Cluster Size

JGU

RC-Pad - Voltage Scan - Decay Time

JGU

CC-Pad - High Rate - Max. Charge

CC-Pad - High Rate - Cluster Number

JGU

CC-Pad - High Rate - Cluster Size

JGU

CC-Pad - High Rate - Decay Time

MM-Pad

JGU

RC-Pad - High Rate - Decay Max. Charge

RC-Pad - High Rate - Cluster Number

JGU

RC-Pad - High Rate - Cluster Size

JGU

RC-Pad - High Rate - Decay Time

MM-Pad

