

A NEW TRANSPARENT XY-MICROMEGAS NEUTRON BEAM PROFILER: FIRST BEAM PROFILES AT n_TOF

M. Diakaki¹, E. Berthoumieux¹, T. Papaevangelou¹, F. Gunsing^{1,2}, E. Dupont¹, M. Kebbiri¹, S. Anvar¹, P. Sizun¹, E. Monmarthe¹, D. Desforge¹, D. Jourde¹, M. Sabarte-Gilarte², T. Geralis³, T. Daphni⁴, E. Ferrer-Ribas¹, L. Tassan-Got⁵, L. Audouin⁵, J. Heyse⁶, P. Schillebeeckx⁶, C. Paradela⁶, F. Belloni⁶

¹ IRFU / CEA-Saclay, France.

² CERN, Geneva, Switzerland.

³ INPP / NCSR « Demokritos », Athens, Greece.

⁴ University of Zaragoza, Spain.

⁵ IPN, Université d' Orsay, France.

⁶ IRMM, Geel, Belgium.

- XYMGAS with segmented **mesh** + **anode** development.
- Application: quasi-online neutron beam profiler + flux monitor.
- First profiles at the n_TOF facility at CERN : Analysis and Results

SEGMENTED MESH MICROBULK DEVELOPMENT

1. Mass minimisation

(5um Cu - 50um kapton - 5um Cu).

- 2. Large surface detectors.
- 3. High radiopurity.

« A low mass microbulk with real XY structure », Th. Geralis, RD51 Common Fund Project

Segmented mesh microbulk:

- 1) No extra layers
- 2) Production simplification
- 3) Real XY structure

CON PROTOTYPE EVOLUTION

First batch:

- Problems during etching x due to holes topology.
- Many strips in short circuit. ×

Second batch

Etching OK with the new

topology

- All detectors working
- Bad energy resolution due to ×

Third batch

- Holes \oslash 60/50 µm
- Gaps reduced to 35 µm
- **Energy resolution OK!**

The first detectors produced:

- 58 x 59 strips on a 6 x 6cm² area (**1mm** thickness)
- Mesh hole:~ 60µm / Pitch: 100 µm.

C22 NEUTRON BEAM MONITOR + PROFILER

Accurate neutron cross section measurements require:

Neutron fluence/Beam interception factor

Number/fraction of neutrons hitting the area covered by the sample.

Shape of the beam profile

Beam optics misalignment => Beam fluence variations.

For non-monoenergetic neutron sources:

=>Dependence of profile on the neutron energy

Requirements:

- Quasi-online neutron flux + beam profiler as well
- Minimal perturbation of the neutron beam / Minimal induced background
- Stay permanently in the beam

DE LA RECHERCHE À L'INDUSTRIE

PRINCIPLE OF NEUTRON BEAM PROFILER + MONITOR OPERATION

The neutron flux will be simultaneously extracted from the SUM SIGNAL.

ELECTRONICS

Challenge:

No global trigger signal => AGET electronics* + Reduced CoBo configuration Self triggering mode / timing difference between strips.

- 64 analog channels /chip. ٠
- Auto trigger: discriminator and threshold ٠
- Multiplicity signal: analog OR of 6discriminators ٠
- Address of the hitted channels ٠
- SCA readout mode (all/hitted/selected channels)
- Max sampling rate: 100 MHz. ٠
- 16 peaking time values: 50 ns-1us. ٠
- 4 charge ranges/channel: 120fC/ 240fC/ 1pC/ 10 pC.

*GET, General electronics for TPC, ANR proposal / GET-QA-000-0005, AGET Data Sheet.

CO2 PREVIOUS FRONT-END CARDS SETUP

Front end electronics: protection card, able to

- 1) take the signal from the strips (mesh+anode)
- 2) distribute the HV (mesh)
- 3) take the sum signal (recorded with conventional electronics).

Problems: missing strips, wrong routing, noise from low voltage supply module

DE LA RECHERCHE À L'INDUSTR

Ceanew front end cards

DE LA RECHERCHE À L'INDUSTR

DETECTOR PERFORMANCE WITH Xrays

X-ray source : ⁵⁷Fe

• No stripped microbulk at good transparency: ~11%.

THE n_TOF FACILITY (CERN)

Neutron beam characteristics:

- 1. White neutron beam (0.025 eV-1 GeV).
- 2. Neutron energy defined by the Time-Of-Flight.
- 3. High instantaneous flux.
- 4. 7ns width proton pulse every > 1s
- 5. Excellent energy resolution

DE LA RECHERCHE À L'INDUSTRI

Cea mounting the detector in Ear-2 (1)

• Proper grounding + shielding essential.

 ⁶LiF target, 91.8µg/cm²
(EXTP 2013-104-01)

DE LA RECHERCHE À L'INDUSTR

COMOUNTING THE DETECTOR IN EAR-2 (2)

DE LA RECHERCHE À L'INDUSTRI

SIGNAL ANALYSIS

Peak useful parameters are stored (**Amplitude**, **Peak position**, TOT etc) **Event** useful information is stored (Time of event, multiplicities etc)

1) Interval time between consecutive events:

2) Total Amplitude histogram (sum of strip amplitudes for each event):

COS EVENT SELECTION CRITERIA FOR BEAM PROFILE (1)

From each event + for each dimension we calculate the time difference between first and last strip hit (Δt)

Final total amplitude hist much cleaner:

DE LA RECHERCHE À L'INDUST

EVENT SELECTION CRITERIA FOR BEAM PROFILE (2)

Criterion 3: strips hit have to be consecutive=> pile-up events rejected

Criterion 3: Only alphas

Ce TOWARDS THE BEAM PROFILE

- XYMGAS neutron beam profiler in operational mode. The electronics were improved / Dead time Will stay permanently in-beam at n_TOF.
- Further improvements in the design of the detector for the next production, based on the tests performed is foreseen.
- Complete characterisation of the detector at the nuclear reactor Orphee, CEA-Saclay (spatial resolution etc).
- Challenging physics measurements (neutron induced charged particle reactions, angular distributions etc) will be investigated with this detector.

.....Thank you.....

DE LA RECHERCHE À L'INDUSTRI

EXTRA SLIDES

DE LA RECHERCHE À L'INDUSTRI

RECONSTRUCTED MASK IMAGE X-RAYS

M. Diakaki, Academia-Industry Matching Event Second Special Workshop on Neutron Detection with MPGDs, 16-17/03/2015

DE LA RECHERCHE À L'INDUSTR

