

Update on THGEMs and Micromegas production for RICH-1 COMPASS Upgrade

on behalf of THGEM Trieste group

INFN - Sezione di Trieste

S. Levorato

Hybrid Detector (2 x THGEM + B-Micromegas)

Double THGEM: t = 0.4 mm; p = 0.8 mm; h = 0.4 mm

- Simple; robust; cheap;
- High photoelectron extraction efficiency in CH4 rich mixtures;
- Fast signals time resolution $\sigma \approx 10 ns$;
- Closed Geometry;
- Cascade \rightarrow G $\approx 10^5 \rightarrow$ single photon detection;
- IBF < 5%;
- Stability: time & high rates

Each 600mmx600mm detector is made of 2 modules Each of them consisting of:

- 2 300mmx600mm THGEMs
- 1 300mmx600mm Bulk Micromegas

Detector: integration of the new architecture

Detector: THGEM production material

Thickness PCB variance as big as 15% for non selected PCB

Technical Data

Need of material preselection 50 foils of raw PCB material bought

Gain Variance > 40%*

example THGEM: t = 0.8 mm; p = 0.8 mm; h = 0.4 mm

*Standard daq chain Cremat+Ortec+MCA, Ar/CO2 70/30 atmosphere

Lead-free , Halogen-free Material EM-370(5) / EM-37B(5)

PRODUCT	EM 370-5	
Thickness	0.407 mm	
Copper	35μ / 35μ	
Sheet Size	1 245 x 1 092 mm	
Sqm Price	31.55 € / m²	
Sheet Price	42.90 € / Sheet	

Basic Laminate Property

Item		IPC-TM-650	Test condition	Unit	Typical Value
Glass transition temp.		2.4.25	DSC	°C	155
CTE, X-, Y-axis		2.4.24	Pre-Tg, TMA	ppm/°C	12/15
CTE, Z-axis		2.4.24	Alpha 1, TMA	ppm/°C	40
			Alpha 2, TMA	ppm/°C	190
Z-axis Expansion		2.4.24	50~260℃ , TMA	%	2.60
Decomposition temp.		2.4.24.26	TGA	°C	385
Thermal stress 10sec 288℃		2.4.13.1	Clad	-	Pass Visual
			Etched	-	Pass Visual
Water absorption		2.6.2.1	E-1/105+D-24/23	%	0.11
Peel strength	0.5 oz	2.4.8	as received	lb/in	7.4
			after thermal stress	lb/in	7.4
	1.0 oz	2.4.8	as received	lb/in	8.6
			after thermal stress	lb/in	8.4
Permittivity (RC 50%)	1 MHz	2550	C-24/23/50	-	4.8
	1 GHz	2.0.0.0			4.3
Loss tangent (RC 50%)	1 MHz	2.5.5.9	C-24/23/50	-	0.009
	1 GHz				0.013
Volume resistivity		2.5.17.1	C-96/35/90	MΩ-cm	>10 ¹⁰
Surface resistivity		2.5.17.1	C-96/35/90	MΩ	>109
Flexural strength	Warp	2.4.4	as received	MPa	560~600
	Fill		as received	MPa	470~510
Flame resistance		UL-94	A&E-24/125	-	V-0

Specification Sheet : IPC-4101C / 127/128

THGEM production: thickness measurement

Thermalized room with Mitutoyo EURO CA776

From 1245 mm x 1092 mm Raw PCB foil XY reduction Expected more uniform in thickness (production procedure)

On average 3 measured pcs/day Each foil has its unique n identifier 36 x 36 points in square pattern from (0,0) to (700,700)

(0,0)

▼ X

Top View

800 mm

THGEM production, material seection

 $\delta_{thickness}$ <3% (reminder 5% in thickness ightarrow 15% in gain)

 $\delta_{thickness}$ (%)

THGEM production, material selection

THGEM production

24 fixation points to guarantee THGEMs flatness and positioning Pillars in PEEK

Segmentation in 12 sectors

0.7 mm sector separation

2 reference holes to guarantee the THGEMs staggering PCB for alignment and spacing

THGEM production

THGEM production

In Trieste Cleaning procedure will be applied : polish, high pressure water cleaning, ultrasonic Bath + microetching, distilled water rinsing and oven @ 160 °C, final step Gain Characterization

THGEMs stored for transport in dedicated boxes for gold coating to CERN.

THGEM characterization: proof of the principle

Operation is time consuming, and affected by gain variation due to the **P,T** gas/environmental changes

THGEM characterization

Gain Uniformity will be measured with X-Ray source (up to now ⁵⁵Fe), Data collected with SRS system. Each THGEM will be fully characterized. Amore software adapted, Different Mapping Option added to have Pads: Thanks to Eraldo for borrowing us the FEC!

Final anode design to be completed in the next weeks for production at TVR company, first delivery foreseen for half of July, they will be delivered to CERN for BULK Micromegas production (Agreed with RUI)

Prototypes have already been produced @ CERN with good results in terms of gain uniformity and detector stability

Start of production of BULK MM (final pieces) at the end of July Then 2 pieces for month "Surface" pad -> HV via internal connection **Fiber Glass** PCB "Inner" pad -> signal induced by RC coupling

Detector Micromegas production

Full detector characterization: Gain Uniformity, HV monitoring, PT variation

Caen HV 1471 A

Correction of Voltage f(P, T)according to linearized exponential law System fully automated + logging LabVIEW based

wireless PicoAmmeter + automated logging Linux SW QT-based

The correction under study but encouraging results!

Hybrid prototype 2 THGEMs + Micromegas **w/o PT** correction **± 20%** gain variation during the day **with PT** correction **± 5%**.

Thanks for your attention!