
Speeding Up the Garfield++ 
 

Ali Sheharyar (Texas A&M University at Qatar) 

Dr. Othmane Bouhali (Texas A&M University at Qatar) 
 

11-June-2015 

Illustration of a result from the CMS experiment at the LHC, gathered on May 27, 2012 (Source: CERN) 



Problems with Garfield simulations 

¨  Simulations take too much time. 
¤ … sometimes may take several days or even weeks. 

¨  Complex and large experiments are not feasible. 
¤ Such as involving larger electric fields, higher voltage, 

gains and large number of events. 



How to Speed Up? 

¨  Three approaches: 
1.  Optimization of the serial Garfield++ 
2.  Event-level parallelism 
3.  Track-level parallelism 

¨  We are working on the 1st and 2nd approach 
currently. 3rd approach has been kept as future 
work. We are considering the use of GPU to 
simulate the individual electrons/tracks. For now, let 
us talk about the current work. 



Optimize the serial implementation of the 
Garfield to speed up the calculations. 

Optimizing the Garfield++ 

1st Approach 



Observations 

¨  The Garfield code was profiled using GNU profiler 
(gprof) 

¨  It has been observed that almost 90% of the time is 
spent in finding the element in the electric field 
corresponding to a given 3D location. 

¨  The element search is linear O(N). Garfield stores 
all elements in a linear array. 

¨  If the given point is not found in the last found 
element, the search again restarts from the 
beginning of the element list and takes O(N). 



Optimization 1: Use spatially indexed 
data structure 

¨  Replace the linear array data structure with a 
spatially indexed data structure such as PR (Point-
Region) Octree. 

¨  The PR-Octree subdivides the space in eight octants 
of equal dimensions and store the nodes of the 
tetrahedrons in a hierarchical fashion. 



Searching through the Octree 

¨  The search time is reduced from O(N) to O(logN) 

Image source: Wikipedia 

log(N) 

Start from the root 



Optimization 2: Search through neighbors 

¨  Currently, if a given point is not found in the last found 
element, the search begins from the beginning hence 
taking O(N) [The octree reduces it to O(logN)]. 

¨  Considering the behavior of electron tracks, the next 
query position is expected to be around the previous 
position. 

¨  If the new position is not found in the last found element, 
then it would be most likely in one of its neighbors. 

¨  Each tetrahedron has four (4) neighboring tetrahedrons 
who share the same face. 

¨  Searching the neighboring elements is a constant time 
operation. 



Initial results 

¨  Number of events: 100 
¨  Scenario 1: 

¤  Number of elements: 8K 
¤  Number of nodes: 14K 
¤  Original time: 4m 12s 
¤  New time: 41s 
¤  Speedup: 6.14 

¨  Scenario 2: 
¤  Number of elements: 135K 
¤  Number of nodes: 217K 
¤  Original time: 6m 22s 
¤  New time: 14s 
¤  Speedup: 26.36 

¨  The speedup is expected to be greater for larger electric field meshes. The 
benchmarking is the work in progress 



Distribute the simulation of multiple events over 
multiple processes using MPI 

Event-level parallelism 

2nd Approach 



Event-level parallelism 

¨  Adapt GARFIELD to a parallel 
programming framework. 

¨  Shared memory or distributed 
memory architecture? 

¨  Workflow of the serial 
simulation. 

Counter < N

Start

Randomize the 
position of primary 

electron

Ev
en

t

Counter = 0

Initialize Garfield

Stop

Increment 
Counter

Calculate Electron 
Avalanche

Analyze Results

Generate Electric 
Field

G
arfield Sim

ulation

Serial simulation workflow 

Distributed memory architecture 



Parallel Garfield (pGarfield++) 

¨  Based on MPI 
¨  Architecture of the pGarfield++ 

¨  Random number generation 
¨  Master distributes the 

workload and gathers the 
results back. 

1 2 3

0

Workers Workers

Master

a
b

4

Random Number
Server

a
b

a
b

c c

c

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Network

Master Client Client Server

Number of processes (Size)
MPI Launcher

Application executable
Arguments

Rank=0 Rank=1 Rank=2 Rank=3



Performance Results: Speedup 

Performance was evaluated on the HPC cluster at Texas A&M University at Qatar. 
The HPC cluster (named RAAD) is a 42+ TFLOP, 2208-core Intel Xeon system. 



Performance Results: Parallel Efficiency 



Correctness of the Parallel Simulation 



Summary 

¨  Event-based parallelization completed 

¨  Element Search optimization in progress (up to 26 
times faster) and expect to increase 

Next step: 
¨  Improve search optimization 
¨  Work on the track-based parallelization 


