

CERN

Validation studies of the Micromegas quadruplet prototype for the ATLAS upgrade

B. Alvarez Gonzalez¹, M.Bianco¹, E. M. Farina^{1,2}, F. Kuger^{1,3}, Tai-Hua Lin⁴, P. lengo¹,
M. Schott⁴, G. Sekhniaidze⁵, <u>O.Sidiropoulou^{1,3}</u>, C. Valderanis⁴, J. Wotschack¹

¹CERN, ²INFN and University of Pavia, ³University of Würzburg, ⁴University of Mainz, ⁵INFN and University of Naples

Work supported by the Wolfgang-Gentner-Programme of the General Federal Ministry of Education and Research (BMBF)

12 June 2015 - RD51 Mini Week

Outline

Introduction

- Efficiency Scan Stability
- Gain uniformity measured with Cosmics and X-Rays
- Conclusions

MicroMegas Small Wheel (MMSW) prototype

Quadruplet detector with active area ~0.5m² per plane, following the general design foreseen for the ATLAS New Small Wheel upgrade project (Common project between CERN, University of Mainz and Kobe)

- 4 readout layers arranged in two doublets back-to-back
 - 2 x horizontal strips
 - 2 x stereo strips inclined by ±1.5°
- 1024 strips per readout layer, strip pitch 415 μm
- Readout strips covered with 50µm thick Kapton foil and sputtered resistive strips with a surface resistivity of 1MΩ/sq

Description of the setup in the GDD lab

Cosmic measurements:

- 12 plastic scintillators per plane, 2m apart, active area
 ~2.5 x 1.1 m² (8 used for data taking)
- Cosmic rate ~18Hz
- SRS system: 2 FECs fully equipped with 32 APVs + mmDAQ

X-Ray measurements:

- Mini-X Silver (Ag) gun
- HV up to 50kV
- Beam intensity up to $80 \mu A$

Gas mixture: Ar:CO₂ 93:7

Efficiency Scan

- Cosmic data
- Scan at different Voltages the target layer, from 500V to 600V. All the other layers at 580V (reference layers)
- Reconstruct tracks without using an external tracking system

Algorithm

- Reconstruction of tracks in the reference layers.
 - → 2 layers needed to reconstruct X coordinate, at least 1 stereo
- Extrapolation or interpolation to the target layer. If cluster is found in this layer in a defined acceptance window, the layer is considered to be efficient.
 - The acceptance window is calculated by the residuals from the expected and the measured positions

Efficiency Scan

Layer 1		Layer 2		Layer 3		Layer 4	
χ² / ndf	59.84 / 3	χ² / ndf	75.75 / 3	χ² / ndf	144.7 / 3	χ² / ndf	53.24 / 3
0	$\textbf{0.9972} \pm \textbf{0.0005592}$	0	0.9972 ± 0.0007443	0	$\textbf{0.9999} \pm \textbf{5.097e-05}$	0	$\textbf{0.9999} \pm \textbf{0.0003154}$
1	$\textbf{503.8} \pm \textbf{0.1965}$	1	517.6 \pm 0.1502	1	$\textbf{528.5} \pm \textbf{0.1531}$	1	531.3 ± 0.1525
2	${\bf 15.65 \pm 0.1604}$	2	15.96 ± 0.1296	2	$\textbf{17.21} \pm \textbf{0.09755}$	2	$\textbf{18.34} \pm \textbf{0.1121}$

2D Map Efficiency

2D efficiency map of Layer 4 in different voltages

2D Map Efficiency - All Layers at 580V

Layer 1

Layer 2

Layer 4

Efficiency Stability - Preliminary results

■ For this kind of studies the HV must be less than the "good" working point. \rightarrow All layers at 560V

- Layer 1 at 560V is already at the plateau region
- Drop of the efficiency on Saturday and Sunday ~ 18:30
- Cluster charge mean values follow the same trend
- Possible correlation with the outdoor temperature ? (gas bottle located outside the lab)

Further studies are foreseen:

Run with gas supply at constant temperature

Gain uniformity measurements with X-Rays

- Monitor of the amplification current
- X-Ray settings: HV=50kV, I=50µA, 2mm collimator (cone angle of 5°)
- 228 different points in two set of measurements
- Layers under study set to 560V while upper layers were turned off

Gain uniformity measured with X-Rays

12/06/15

Gain uniformity measured with Cosmics

- All layers at 560V, Layer 1 on top
- To produce the same 2D map as with the X-rays a window of 20 strips around each (x,y) point was opened in order to increase the statistics
- For each (x,y) point the cluster charge was collected and fitted with a landau. The MPV was extracted and plotted to the corresponding position.

Gain uniformity measured with Cosmics

12/06/15

Comparison between X-Ray and Cosmic measurements

In order to compare the amplification current measured with the X-Rays and the MVP of the cluster charge, the average of each y measurement was taken

GIF++ plans

To finalize the qualification of the chamber,

long term aging studies are foreseen

- In few weeks the chamber will be installed in GIF++ to study its behavior under high rate irradiation
- The setup is ready and everything is in place
- Since 1 month now, we take data with 2 bulk Micromegas chambers to exercise the validation procedure

Conclusions

- Systematic studies of the efficiency and the gain homogeneity of the MMSW quadruplet have been performed. All layers show very good efficiency and gain uniformity for our application in ATLAS.
- The comparison of Cosmics and X-Rays are in good agreement.
 - → 2 layers have an overall uniformity along the strips of the order of 20%
 - 2 layers show a difference of the order of 40% (still under investigation)
- Next step: long term operation studies are foreseen in GIF++

BACK-UP SLIDES

Gain uniformity for L1 and L2 in different configuration

x [cm]

Layer 1 on top, close to the X-Ray gun