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The Dutch aproach for protontherapy

[/
1. The standard indicat’@%s* (pediatric,
melanoma of the ey@ ): fully reimbursed

2. The trial pat{@s externally funded

3. The moddﬁsed indications™ (head &
, lung, breast, prostate,
diations...): need an accredited
w@O Decision Support System (DSS)

MAASTRO * Equipoise, ALARA... Only if there is no Dose escalation




Proton therapy reimbursement decision tree for the N lands
ALARA o
principle
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Proton therapy reimbursement decision tree for the Netherlands

QICAT

Is this disease a
standard indication?

No.
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Create “state of the art”

PHOTON and PROTON
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Multifactorial Decision Support System

Pathology

Toxicity

A Lambin et al. Nature Rev. Clin. Oncol. Uriverseft Masse



Selection of patients for protons 6

IMRT (photons)

IMRT (photons)
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Data selection

Conventional
Clinical ing
Research th Care

High data Low data
quality qguality

Low data High data
guantin, guantity

Controlled Reality

» Celected patients » Unselected patients

* “EORTC-RTOG grade” + “Clinical grade”
A/Protocol QA/Protocol
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Open source data of publications: www.cancerdata.org

Sharing medical data for cancer research

Follow us
About CancerData 0

¥ Follow @CancerDataOrg
The CancerData site is an effort of the Medic atics and Knowledge Engineering team :
(MIKE for short) of Maastro Clinic, Maastricht, etherlands. Our activities in the field of
medical image analysis and data modelli re visible in a number of projects we are running.
Please refer to the Links for more informati Navigation
Open source driven About us
CancerData is build usinglEree’a n Source Software (FOSS) only. Refer to this page for Data
more information on the u S0 re. )

2 : : Collections

In return, we offer to i e analysis and more. Have a look at the file manager (ps:
allow popups). Links

Contact us
Contact )
Please form for feedback or more information. Login

Search ﬂ Universiteit Maastricht

® Read more



Rapid Learning

In [..] rapid-learning [..] data 6
routinely generated through » ’Q ,
. L. Clinical tri. coMmparative \
patient care and clinical effectiveness reswfeh, molecular \
) i y/ logic data Information-rich,
research feed into an ever g i
growing [..] set of coordinated -, data
databases. OQ“’“’”’“
*Abernethy, J Clin Oncol
2010;28:4268 0&\
[..] rapid learning [..] Where®
we can learn from eac
patient to guide practi s [..] chznsformat/on of s
. . . S a
cru_czlal to guide rg% health| ™ ;22357; i agg;egai,-on,
policy and to c? costs [..]. evidence
generation
*Lancet On 11;12:933 e ———
X >
MA& o ﬂ Universiteit Maastricht
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Administrative
(time to capture,

Sharlﬂg data time to curate)

)

[..] the problem is not really Y/
technical [...]. Rather, the
problems are ethical, political,
and administrative.

Lancet Oncol 2011;12:933

Political

(value,
authorship)

Barriers

Solutions: Distributed learnin .
federated databases w Et_hlca|
(privacy)

MAASTRO



Data warehousing for research

Contents lists available at SciVerse ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Clinical domain

- Extraction
services

Sync manager

Original article
Benefits of a clinical data warehouse with data mining tools to collect for
a radiotherapy trial

Erik Roelofs **!, Lucas Persoon®', Sebastiaan Nijsten?, Wolfgang Wiessler®, André ekke
Philippe Lambin !

* Department of Radiation Oncology (MAASTRO Clinic), Maastricht University Medical Centre {(MUMC), The Netherlands; " Siemens, il Ivern, PA. USH
PN 0 Private
‘ C AT sandboxes
‘*' euro Project 1
- \ CAT D B Project 2
(mirror) 0

Project n

Local Data Sources — \ 2
X "jlearcanvas
ASTRO
N 5
= [ =[]
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MAASTRO Research domain



Ontology mapping

(To be done once)

(- | [|_| eurocat-cs/euroC ATAdmIinPortalfeuroCATRortal, aspx by - '-'l" Google Pl #®| B
p— ==

i @ 2. Search the
Research Portal O::ﬂ.,::;rTanafj;.::;mm : 6 ontology for the

Disease | T-Stage | MN-Stage | M-Stage | Gender | Procedure matChIng Concept

T Location: 40

umor cation cearch - /

Supraglottic larynx, NOS | p e/Code: |subg|ottic I | lCDntains = ‘ () Search oSav]

Ventricular band - ~ 7 ~

Arytenoid £H

I 1. Select the local — L {code: C3546

e ame

Infrahyoid epiglottis term in different e , _ ;

Aryepiglottic fold sealoie) Name: Malignant_Subglottis_MNeoplasm

Clattic | Nos Iang uages C4427  Benign Su

-_;, i 4427 senign sul Preferred Name: | yalignant Subglottis Neoplasm

! 3546 | Malignant .
r) S — Definition: A primary or metastatic malignant

1426 Subglottis neoplasm involving the subglottis.
1426  Subglottis

Paranasal sinuses, NOS5

Ethmoid A
Existing mappings: |sayve mappings \

|Tun'\c:-r Location Code Name 0

Tumor Location Code Mamie

3. Map the local

term to the
ontology

Subglottiz C3 54&Q i nt Subglottis Neoplasm

\[\{\K ’Q Of your mapplng % Universiteit Maastricht

MAASTRO

4. See the result
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MAASTRO’s euroCAT approach

An IT

i Infrastructure
@
To make Under their [
radiothere.y full control [
center's O
S Semantic While the
E ‘nteroperable/ data stays e
S machine inside the [
S PO readable hospital P o
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Visualization of Distributed Learrg@
Support Vector I\/Iachme
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) 4 Q atlent \ Distributed Learning Solution
®

Event Patient Centralized Learning Solution Simulated Data




Visualization of Distributed Lear '@%
Support Vector Machines (worst case.séenario)

Full Dataset %
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Results:

Distributed Learning vs. Centralized\learning

Data from toxicity analysis, N = 259 (Nalbdntov et al. 2015)

— Data available at www.cancerdata.org

Endpoint: Severe dyspnea (CTCAE dysphea score =>2)

Predictors

— Baseline dyspnea

— FEV1 (in %)

— Tumor location

— Sequential chemotherapy
— Cardiac comorbidity

AUC
Centralized Learning 0.588
Distributed Learning 0.588

Clinical Data



http://www.cancerdata.org/

Funded: euroCAT, duCAT, chinaCAT, VATE, oz 27
New: ukCAT, indiaCAT O
N\
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" @ Active or funded CAT partners (17)

( ' Prospective centers
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Radiotherapy and Oncology xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Radiotherapy and Oncology

R journal homepage: www.thegreenjournal.com

Original article

Cardiac comorbidity is an independent risk factor for r
lung toxicity in lung cancer patients ~

jation-induced

Georgi Nalbantov™*, Bas Kietselaer ™, Katrien Vandecasteele “, 1je *, Maaike Berbee®,
Esther Troost“, Anne-Marie Dingemans , Angela van Baardvgk °, Kint"Smits *, André Dekker *,
Johan Bussink', Dirk De Ruysscher *#, Yolande Lievens®, Ph Lambin*

* Department of Radiation Oncology (Maastro Clinic) GROW - School for Oncology and D

“ Department of Radiology, Cardiovascular Research Institute Maastricht (CARIM), Maastric
Ghent, Belgium; * Department of Pulmonology, GROW - School for Oncology and

Bis , Maastricht University Medical Centre; ® Department of Cardiology:
ands: * Department of Radiation Oncology. Ghent University Hospital
¥, Maastricht University Medical Center, Maastricht; ' Department of

Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmege iation Oncology, University Hospitals LeuvenyKU Leuven, Leuven, Belgium
ARTICLE INFO ABSTR

Article history: Purpose: ypothesis that cardiac comorbidity before the start of radiotherapy (RT) is associ-
Received 30 May 2013 at a sed risk of radiation-induced lung toxicity (RILT) in lung cancer patients.

Received in revised form 21 August 2013
Accepted 25 August 2013
Available online xoxx

methods: A retrospective analysis was performed of a prospective cohort of 259 patients
nal lung cancer treated with definitive radio( chemo)therapy between 2007 and 2011 (Clin-
v Identifiers: NCT00572325 and NCT00573040). We defined RILT as dyspnea CTCv.3.0 grade
22 within 6 months after RT, and cardiac comorbidity as a recorded treatment of a cardiac pathology at a

::”::‘:" cardiology department. Univariate and multivariate analyses, as well as external validation, were per-
Q: 6e o bidity ed. The model-performance measure was the area under the receiver operating characteristic curve
Radioth (AUC).
qum.:"w Results: Prior to RT, 75/259 (28.9%) patients had cardiac comorbidity, 44% of whom (33/75) developed
Radiation-induced lung toxici RILT. The odds ratio of developing RILT for patients with cardiac comorbidity was 2.58 (p < 001). The
cross-validated ALIC of 2 madel with cardiac comarhidisy tmac lacatian fosed ovniratory volume in
Results: Prior t 4 59 (28.9%) patients had cardiac comorbidfty, 44% of whom |[33/75) developed
RILT. The o f developing RILT for patients with cardiac relrey=—rras=2.58 (p <0.01). The
cross-vali d AWC of a model with cardiac comorbidity, tumor location, forced expiratory volume in

ialfchemotherapy and pretreatment dyspnea score was 0.72 (p <0.001) on the training set,

leadine tn hattar curvival ratec at raducadicimilar lavale of traar.

ﬂ Universiteit Maastricht



Radiology:
Implicit knowledge

) Interpretability
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RADIOMICS
Extract quantitative features from
images
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@ Universiteit Maastricht Lambin et al. EJC, 2012; Aerts, Lambin et al. Nature Commun 2014



ANATOMY

PHYSIOLOGY

METABOLISM

Radiomics Features

MOLECULAR
IMAGING

PROTEINS

GENOME
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Lambin et al. EJC, 2012; Aerts, Lambin et al. Nature Commun 2014
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40 Years After Tuskegee: Reuniting Medical Research and Practice

Ruth Faden (Bioethics) Jan 16 2013, 10:44 AM ET %t[am’ic

Guidelines to protect human research subjects impede efficient generation and @xchamge of knowledge.

..each episode of care we receive, should’generate data
and evidence that improve the care 6f,patients who

come after us; we then, in turn, beneéfit from what Is
systematically learned from the eare received by
patients who come before US:

Al © Ul Padlic VWITU CUITIC o VWWC U [4°15 D& U WIC cU 11U

V C i allV i C
received by patients who come before us. Through continuous, real-time learning, we can provide better care to
more people, save lives, become smarter, anthwhing every dollar of value from the system. This is what the

Insti f Medicine has dubbed the| |, 1 "
nstitute ot Medicine has dubbed the Iearnlnq healthcare system.

Rk g, '
~ < \%\K.\ b Universiteit Maastricht

MAASTRO


http://onlinelibrary.wiley.com/doi/10.1002/hast.134/full
http://www.iom.edu/Activities/Quality/LearningHealthCare.aspx
http://www.iom.edu/Activities/Quality/LearningHealthCare.aspx

Rectum cancer: Mortality after surgery

6 month mortality >> 1 m(@

Age and comorbidity related
30 \8

mortality

28.9
1 TME (1 month)

Bl CCC (1 month) é

Bl TME (6 months)

50 [ CCC(6 months) ®
17-6
0 134 134

Mortality (%)

3-2
11

| |
65-74 75-84 85-95
Age group (years)

\4\1\(\’0 Rutten et al. Lancet Oncology 2008; 9: 494

37




E.Q. Q.SNP TANCL1 in prostate cancer
(h@’enetics 2014) or mitochondrial DNA signature

ol ﬁpubllshed) b

MAA o



S
What abou@ﬁe
N

s

N4
P
\.z-.\%M ‘}A)ST(RX % Unverstrt Maastret



ats the patient
ne disease”.

'Osler, the father of modern medicine



The 5 P’s of modern medlcng??

(from Leroy Hood)

« Py for Persong@ﬂ

« P » for Pre@mve

« P» f%@edlctlve

« R@.\}or Participatory
\‘b
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Decision aids for people facing health treatment or

Stacey D, Bennett CL, Barry M]J, Col NF, Eden KB, Holmes-Rovner M, Llewe
Lyddiatt A, Légaré F, Thomson R

This is a reprint
2012, Issue 5

a Cochra

decisions (Review)

BORATION®

screeni

Thomas H,

, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library

http://www.thecochranelibrary.com

Shared Decision Making with Decision aias

Mean Mean

Study orsubgoup  Decision Aid Ustal Care Difierence Weight Diference
N Men(sD) N Men(sD) IVRandom95% O WRandom 5% C

Nagle 2008 167 1435 (1275) 171 15(1415) - 5% 1351 74,424
Vandermheen 2008 70 ™ 79 T 5B% 750[-1242.-158]
Vodermaier 1009 55 56 IsE) 48% £75[-1432.083]
Whelan 2004 94 107 1703 - 3% 450[ 796, -1.04]
Wong 2005 136 1938 (1113) 159 3667 (1.17) %= TI%  -I729[2100.-1158]

Subtotal (95% CI) 1655 1702 - 100.0 % -4.95[-7.51,-2.39]

Heterogeneity: Tau? = 1041; Chi® = 8156, df = 15.(P<00000 1) P =82%

Test for overall effect Z = 379 (P = 000015)

4 Total decional conflict score
Delan 2002 4l 7 — W% 500[-1244.264]
Laupacis 2006 ] 54 2525(1425) — 49% T75[-1206, 244 ]
Legare 20082 B 41 271528 — 43% 400[-1032.232]
Man-SonHing 1999 139 148 - 13 225[512.062]
Mathieu 2007 35 2006 (1451) 295 2089 (1451) . 6% 183[412.047]
MeAlister 2005 05 15 (125) w72 - &% 250493, 007]
Mantgomery 2003 50 79 58 442(193) —— 47% 70022701141 ]
Mentgomery 2007 01 7B(148) - 64% 40 [712.-128]
Morgan 2000 94 1s5(Ts) —_— 1% 00[-1097, 1097 ]
Mullan 2009 7 1495 (1268) — “2% 085 [735.565]
Murray 10012 4 4025 —_ 55% T50[-1189,211]
Murray 20016 9% — 58% 750[-1142,-258]
Nagle 2008 171 - 65% 150[-127.427]
Nassar 2007 98 —_ 56% 890[-1210,-470]
Protherce 2007 & - 4B%  -ITI0[-2258.-1162]
Shorten 2005 99 88 295(1825) —_ 54% 6001054, -1.46 ]
Vandermheen 2008 70 7 ma(ey)  —=— 52% 880 [-1270,-190]
Vodermaier 2009 55 56 2475(155) — 4T% 425 986,138
Whelan 2004 94 107 155(129) - &% 550894206

Subtotal (95% CI) 1981 1979 - 100.0 % -5.66 [ -7.68, -3.64 |

Heterogeneity. Tau? = 1430 Chit = 8247, ¢f = 18 (P<00000 1) F =78%

Test for over 549 (P < 000001}




www.treatmentchoice.info -2
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; Un!tedSta’ s-International ?)Help :
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Decision Aid Tool- Rectum Cancer - MAASTRO Clinic

| Recently, you have been diagnosed with )&\

~
rectal cancer. : )(\
MAASTRO

You are offered to undergo two different
treatment modalities:

(1) Organ preservation treatment or

(2) Surgery in combination with
radiotherapy and chemotherapy,
which is called radiochemotherapy

%
DEC'SION AID TOOL |

BACK NEXT
vanSﬁphout.‘ m (W] verzoek va... | [0 - Mi... = n Aid Too... | [ L3 D) 10:14

b uy ~
; \T. He' T
ﬂ Universiteit Maastricht poye- k ‘
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@it could even decrease them if you look

~pOXN NS at the cost of the whole care cycle. D



Costs of the whole care cycle: Me

during treat

first 6 weeks
N

/ém 0% ¢

_ N YMmaasT

After treatment,
alive with

\zﬁ\)(\)(\&

MAASTR

dyspnoea 2 grade 3
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MAASTRO \__

Cost effectiveness: www.predictcant

MAASTRC

CANCER PREDIC

ad and neck

d outcomes based on currently
able evidence

50000.00
Most cost-effective

treatment IMRT
MPT Most effective
treat t
reatmen |MPT
‘ (based on the number
of QALY's)
g | Expected  Expected
costs QALYs
&) B | IMRT €36500 6565
aglottic area ’?_— a IMPT €47.000 6.76
Additional Additional ICER
ate ] [ Clear all ] [ print ] costs QALYs
€
IMPT versus IMRT €10,500 0.1 93,000

|—_ Made possible by the ROCOGO cooperative group and the School for Public Health and Primary Care (CAPHRI),
Maastricht University, Maastricht, The Netherlands.

\.z:\xé\)(x

MAASTR




PRODECIS: Clinical grade decision support system fa
protontherapy with three modules

|
\
‘\
‘ /
MAASTRO ... >N
CANCER PREDICTION MODELS %\T
=i o = =
—Survival Model Input r— Output Survival Model
T
‘.;lﬂWj"?THCDAwS'aﬁTNS EM

O
e

MAASTR

| Cost-efficient? Price per QALY?



Pipeline A
. 9
( \
DVH Toxicity Cost effgc@’ss

Photon therapy

Pz?at:n :| ) Comparison : orh
- \ roton therapy
— ' e P —
Clinical . ) J
information & /[ '

Data Container ‘
:‘ aN

) 3 J
‘ Pipeline C

\ DVH Toxicity Cost effectiveness
QO . )
N
Q\® Pipeline B

\f"\‘(\)( ‘Q Cheng Q, Roelofs E, Lambin P et al. Submitted

MAASTRO
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Take home message

1. We need Decision Support Systems (DS§%“meta TPS”) to manage
the large quantity of data and implement Personalized medicine in
radiotherapy in particular for proton;@py due to its costs.

2. Two complementary approach ’{Qonventional clinical trials (+ data
reuse) + Rapid Learning Hg@are

rapid evaluation of no erapies or stratification e.g. Distributed

learning, \

4. DSS facilitate Decision Making and cost effective Health care
(the 4" & % . One key example could be protontherapy.

O
e

MAASTR

3. Building cancer informvaﬁz’}xﬁols to enable analysis, exploration, and

Lamb|n et al Aug 281 Rad|0ther OnCOI 2013 (ReV|eW) ﬂ Universiteit Maastricht



Thank you for l%ub?ttention
h\

e
&ncm.org

ww.eurocat.info
(’}' www.cancerdata.org

\@‘ www.mistir.info
OQ www.predictcancer.org



http://www.eurocat.info/
http://www.eurocat.info/
http://www.predictcancer.org/
http://www.eurocat.info/
http://www.cancerdata.org/
http://www.mistir.info/
http://www.predictcancer.org/

Take home message: Questions?

1. We need Decision Support Systems (DS%»a “meta TPS”) to manage
the large quantity of data and implemgnt Personalized medicine

2. Two complementary approache§ c:)}(/entional clinical trials (+ data

reuse) + Rapid Learning Healt e
3. Building cancer informati Is to enable analysis, exploration, and
rapid evaluation of no rapies or stratification e.g. Distributed

learning, Radlomlc,\'
’b

&

O

siteit Maastricht



Open source data of publications: www.cancerdata.org

Sharing medical data for cancer research

Follow us
About CancerData 0

¥ Follow @CancerDataOrg
The CancerData site is an effort of the Medic atics and Knowledge Engineering team :
(MIKE for short) of Maastro Clinic, Maastricht, etherlands. Our activities in the field of
medical image analysis and data modelli re visible in a number of projects we are running.
Please refer to the Links for more informati Navigation
Open source driven About us
CancerData is build usinglEree’a n Source Software (FOSS) only. Refer to this page for Data
more information on the u S0 re. )

2 : : Collections

In return, we offer to i e analysis and more. Have a look at the file manager (ps:
allow popups). Links

Contact us
Contact )
Please form for feedback or more information. Login

Search ﬂ Universiteit Maastricht

® Read more



Rapid Learning

In [..] rapid-learning [..] data 6
routinely generated through » ’Q ,
. L. Clinical tri. coMmparative \
patient care and clinical effectiveness reswfeh, molecular \
) i y/ logic data Information-rich,
research feed into an ever g i
growing [..] set of coordinated -, data
databases. OQ“’“’”’“
*Abernethy, J Clin Oncol
2010;28:4268 0&\
[..] rapid learning [..] Where®
we can learn from eac
patient to guide practi s [..] chznsformat/on of s
. . . S a
cru_czlal to guide rg% health| ™ ;22357; i agg;egai,-on,
policy and to c? costs [..]. evidence
generation
*Lancet On 11;12:933 e ———
X >
MA& o ﬂ Universiteit Maastricht



Distributed learning
architecture |

BRRRREL.

LT

1]
B,

HEEEEEE

Central Se 3
0 Update Model
- @ Send Average

Send Average S
endgAvera Consensus

Consensus
. Corsensus
: Model Model

Send Model 6
Parameters Q

Final Model Created

L

Send Model
Parameters  mms=s

Model Server
MAASTRO

Learn Model
from Local Data

SO 'C)

ARSI Learn Model from Local Data

Model Server Roma

= g

=
Learn Model % Universiteit Maastricht

from Local Data



MAASTRO ‘

Network euroCAT + In 9/2013

Map from cgadvertising.com

- @ Active or funded CAT partners (10)

O @ Prospective centers (4
W\%\K'KQ p ( ) % Universiteit Maastricht

MAASTRO






