ENLIGHT Meeting, Kraków 18-20 September 2015

The current status and challenges of detection and imaging in radiation therapy.

Alberto Del Guerra

Functional Imaging and Instrumentation Group Department of Physics "E. Fermi"
University of Pisa and INFN, Pisa, Italy

http://www.df.unipi.it/~fiig/
Email:alberto.del.guerra@unipi.it

Contents

- Rationale for imaging in hadrontherapy
- First attempts in the late '70s
- Proton radiography and proton tomography
- Taking advantage of nuclear interactions:
- Modelling
- Positron emitters and PET imaging
- Prompt neutral particles \rightarrow gammas
- Prompt charged particles \rightarrow protons
- Combined systems
- Conclusions

Rationale for imaging in hadrontherapy: critical issues

> CT HU (e.g.calibration apparatus)
$>$ conversion to proton stopping power
> dose calculation uncertainties

Patient related

-RBE values
-Tumor heterogeneity
-Contouring uncertainties
-Reconstruction artifacts in CT
-Machine related
-daily positioning on the couch -internal organ motion -changes in air cavities
-tumour regression -weight loss

Other sources

Dose/Bragg Peak Monitoring is advisable!

Rationale for imaging in hadrontherapy

Planned
.. but there was a tissues variation !!
\rightarrow Dose/Bragg Peak monitoring $\rightarrow 2$ major techniques

- 1 - Based on X-ray CT- analogous: pCT (only for Protons)
- 2 - Based on Nuclear Reactions of Hadrons in Tissue
- Off-line \& On-line PET
- Prompt gamma's and neutrons
- Prompt charged particles (only for lons)

"Physical Measurements with High-Energy Radioactive Beams"
A. Chatterjee, W. Saunders, E. L. Alpen, J. Alonso, J. Scherer and J. Llacer Radiation Research, Vol. 92, No. 2 (Nov 1982), pp. 230-244

Abstract

"Physical measurements were made with high-energy radioactive beams (positron emitters) produced as secondary particles from a heavy-particle accelerator. Data are presented for water-equivalent thickness of a silicon diode,a comparison of Bragg peak ionization depth vs stopping depth,and differential stopping depths when a beam is intercepted by heterogeneous materials in the orthogonal direction. A special positron-emitting beam analyzing (PEBA) system was used to form images of the stopped radioactive beam. These measurements will have direct impact on chargedparticle radiotherapy,since the precise range of beams of charged particles to targets within patients can be measured and used for treatment planning. Also, during the treatments the stopping point of the beam can be monitored to verify that the treatment is being delivered as planned.

The PEBA detector

IEEE Transactions on Nuclear Science, Vol. NS-26,

No. 1, February 1979, Jorge Llacer, et al.

Fig. 1 Conceptual design of PEBA, showing two banks of 24 detectors each defining a volume along the path of a heavy-ion beam (x direction).

Fig. 4 Layout of PEBA, showing the 24 tubes of one detector bank arranged in modules of four detectors each.
$\mathrm{NaI}(\mathrm{TI})$ 3" long for the inner; 2" for the outer ones. In-house electronics+ CAMAC+ and microprocessors Results: 1 mm resolution - Limited 3-D reconstruction

Energy loss (MeV/cm)
A.Del Guerra et al., "PET Dosimetry in Proton Radiotherapy:a Monte Carlo Study", Appl. Radiat. Isot. Vol. 48, No. 10-12, pp. 1617-1624, 1997

Prołon radiography and proton tomography (*)

Using the same particles (i.e. protons) but with a higher energy, so that they pass through the target:

- Measure the position with a tracker before (upstream) and after the target (downstream)
- Measure the residual enery with an energy detector (calorimeter) downstream
- Make one planar view to obtain a proton-radiography (pR)
- Make many projections to obtain a proton-CT (pCT)
(*)The idea was originally proposed by Allan Cormack in 1963
(J.Appl. Phys.1963,34, p.2722)

Status of the pCT Project

 UC Santa Cruz, Loma Linda U., Baylor U., Wollongong U.
Tracker:

Extrapolates protons into the phantom.
$4 x-y$ planes of Silicon strip detectors with "slim edges" to avoid image artifacts.

Energy Detector: Provides measurement of the Water Equivalent Path Length (WEPL) of the phantom.
5-stage scintillator with PMT readout.

http://dx.doi.org/10.1016/j.nima.2015.07.066
9 (Courtesy of H.Sadrozinski, 2015)

Radiography with pCT Scanner

Stopping Power

UCSC-LLU-CSUSB 2012, T. Plautz et al., 2012 IEEE NSS-MIC

Wilhelm Roentgen, Laboratory Radiology (1895)

X-Rays

Radiography Relative Stopping Power from X-rays \& Protons

Proton Radiograph (directly in RSP) with $0.5 \times 0.5 \mathrm{~mm}$ pixels transformed from Hounsfield Units to RSP

About 3\%-7\% difference between X-ray R and pR

| ROI | RSP $_{\text {xray }}(\mathrm{cm})$ | RSP $_{\text {proton }}(\mathrm{cm})$ | \% difference
 (2* diff/sum) | Relative
 Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a. | 3.618 ± 0.130 | 3.527 ± 0.125 | $\mathbf{2 . 5 5 \%}$ | 0.505σ |
| b. | 2.892 ± 0.070 | 3.015 ± 0.076 | $\mathbf{4 . 1 6 \%}$ | 1.190σ |
| c. | 4.236 ± 0.119 | 4.561 ± 0.153 | $\mathbf{7 . 3 9 \%}$ | 1.677σ |
| d. | 2.548 ± 0.082 | 2.539 ± 0.041 | $\mathbf{3 . 5 4 \%}$ | 0.0981σ |

Testing the RSP Resolution \& Dose: CTP 404

The Catphan CTP 404 contains inserts of relative stopping power varying from 0.001 to 1.85 . This permits a comparison of a proton scan with Geant4 simulation and X-ray scan.

Insert	Predicted	Reconstr Exp/Sim	Stdnd dev Exp/Sim	Abs Diff [Rec-Pred Exp/Sim
Teflon	1.84	$1.78 / 1.82$	$0.002 / 0.02$	0.06
Delrin	1.35	$1.36 / 1.35$	$0.001 / 0.02$	0.01
Acrylic	1.16	$1.16 / 1.16$	$0.002 / 0.02$	0.01
Air	0.001	$0.04 / 0.02$	$0.004 / 0.02$	0.04
PMP	0.87	$0.90 / 0.88$	$0.004 / 0.03$	0.03
Polystyrene	1.04	$1.04 / 1.04$	$0.007 / 0.02$	0.00
LDPE	1.00	$0.99 / 1.00$	$0.005 / 0.02$	0.01

Table 1. Comparison of predicted versus reconstructed mean RSP of sensitometry inserts for experimental and simulated pCT data. The experimental data had better statistics (2.5M histories per projection), which explains their smaller standard deviation.

The reconstructed map of the relative stopping power RSP in the CTP 404 phantom reproduces RSP values of all inserts with accuracy required by clinical specifications.

Dose comparison of proton vs. X-ray CT scans:
Using weighted CT Dose Index (CTDI)
Proton CT (2 M histories): CTDI = 0.61 mGy X -ray eq CBCT:

CTDI = 2.53 mGy
12

Taking advantage of nuclear interactions

initial state
reaction
final state

Top: proton-nucleus interaction;Bottom:nucleus-nucleus interaction
Ref.: Aafke Kraan, Frontiers in Oncology, 07 July 2015 doi: 10.3389

A "pletora" of Monte Carlo Codes(*)
FLUKA - <www.fluka.org>
GEANT4 - S.Agostinelli et al. NIM-A, 2003,506(6),250-303
MCNPX/6 -T.Gorley et al. Nucl Techol,2012,180(3),298-315
PHITS -T.Sato et al. Nucl Sci.Techol,2013,50(9),913-923
HIBRAC - L.Silver et al.,Radiat. Meas, 2009,44(1),38-46
SHIELD-HIT - DC Hansen et al.Phys. Med. Biol 2012,57, 2393-409
VMCpro - M.Fippel et al. Med. Phys. 2004,31(8),2263-73
PENELOPE \rightarrow PENH - E.Sterpin et al. Med.Phys. 2013,40.
... and more
(*) - For a thorough discussion see Ref.: Aafke Kraan, "Range verification methods in particle therapy: underlying physics and Monte Carlo modeling ", Frontiers in Oncology, 7 July 2015, open access; doi: 10.3389/fonc.2015.00150

Display of stages in nucleon-nucleus interaction relevant for radiotherapy

Positron Emiłters and PET imaging

- A possible method for the control of the geometrical accuracy of the treatment (TPS) is PET imaging of the activity generated in the nuclear interactions in tissue
- Small amounts of β^{+}emitting radioisotopes are produced with short half-lives
- ${ }^{11} \mathrm{C}(20.3 \mathrm{~min})$
- ${ }^{13} \mathrm{~N}(9.97 \mathrm{~min})$
- ${ }^{15} 0$ (2.03 min)

TERMINOLOGY (Both for Protons and Carbon)

First pioneer work by W. Enghardt et al. in the '90 with Carbon Ions (GSI/Bastei tomograph)

- Off-line PET (e.g.) (MGH/Heidelberg/CHIBA)

However \rightarrow In-beam/ln-room dedicated instruments are needed to:
1- Avoid patient re-positioning
2- Avoid data loss of very short living isotopes (e.g. ${ }^{15} \mathrm{O}$)
3- Avoid radioisotope wash-out

- On-line PET (only on phantoms up until now)
\rightarrow In Room-PET, but off-Beam
(GSI/PISA-CNAO/CHIBA/MGH/HEIDELBERG)
\rightarrow In Beam-PET, but with beam-on
(PISA-CNAO/CHIBA-openPET)
\rightarrow PET monitoring (Dose \rightarrow Activity: Standard Approach)

- Comparison between simulated and measured activity with PET

PET monitoring (Dose \rightarrow Activity: The "Filtering")

The filter is independent of E !

- From the planned dose the simulated activity profile is obtained by using the filter approach (ref.:F.Attanasi, et al. Phys. Med. Biol, 2011, 56, 5079-5098).

PET monitoring : The dream

- The delivered dose is measured from the measured activity of PET by using an inverse filtering .The planned dose can then be compared with the measured dose

DoPET(University of PISA \& INFN

DoPET is a stationary 2 heads tomograph

- gantry compatibility
- in-beam acquisition

DoPET (9 vs 9 modules)

The current prototype is an upgrade of a previous 4×4 system
S,Vecchio, IEEE Trans. Nucl. Science, 56 (1), (2009)
G.Sportelli, IEEE Trans. Nucl. Science 58 (3) (2011)

- Hardware (9x9 modules)
- Each detecting module made of one LYSO matrix (23×23 crystals, 2 mm pitch) one PS-PMT 8500 Hamamatsu Dedicated front-end electronics
- FPGA based acquisition and coincidence processing (Coincidence time window ~5 ns).
- Software: Activity reconstruction algorithm:
- Maximum Likelihood Estimation Maximization (MLEM)
- The reconstruction is performed in few minutes \rightarrow We are working on implementing GPU for bringing down the time to 30s

Protons and Carbon ions onto PMMA phantoms: Imaging of the produced activity

Protons 2Gy
(TPS-Single fraction) Two cavities z-profiles Acquisition time:0-600 s

140 mm

Reproducibility: void vs. void

Prompt gamma's w/protons

Measurements with collimated detectors

Energy: <1 MeV to 10 MeV
A small fraction is measured as discrete lines
Smeets PMB 2012
Low energy gammas: larger scattered fraction
Synchronization with accelerator RF or monitor and Time of Flight

Nuclear fragmentation w/C-12 Ions

- Dose deposition during radiotherapy:
- Ionization (in black on the plot)

Prompt gamma's measurements

110 MeV protons in water

J. Verburg, PMB 2013

PG yield above 1 MeV
~ 0.3\% /cm per proton
~ 2\% /cm per carbon

95 MeV/u carbon ions in PMMA

M. Pinto et al, Med Phys 2015

High resolution profiles: influence of heterogeneities close to the Bragg peak

Detectors for Prompt gamma's

Collimated cameras

- Multi-slit cameras
- Seoul
- Lyon $\sim 1 \mathrm{~mm}$ at pencil beam scale (10^{8} protons)
- Delft - Multislit with TOF (project)
- MGH: TOPAS Simulation of collimated camera for passive delivery: Synchronization with range modulator wheel (M. Testa, PMB 2014, J. Verburg, PMB 2015)
- Knife edge
- Seoul (D. Kim, JKPS 2009)
- Delft : Simulation (Bom, PMB 2012, Cambraia Lopes, PMB 2015)
- IBA : Operational prototype (Perali, PMB 2014, Preignitz, PMB 2015)

Compton cameras

- No collimation: potentially higher efficiency
- Potentially better spatial resolution (<1cm PSF)
- If beam position known \rightarrow simplified reconstruction
- 3D-potential imaging (several cameras)

Compton camera

Lyon project: TOF and beam position with hodoscope

Count rate issue

Simulation: line-cone reconstruction for Lyon prototype 1 distal spot (10^{8} incident protons) incident on PMMA target, 160 MeV
Continuous beam (IBA C230)
Clinical intensity: $\mathbf{2 0 0}$ protons/bunch $\boldsymbol{\rightarrow S} / \mathbf{N}=\mathbf{1 / 1 0}$
Reduced intensity: 1 proton/bunch $\boldsymbol{\rightarrow} \mathrm{S} / \mathrm{N}=5 / 1$
(J.Krimmer, NIMA 2015)

Prompt protons Charged fragments - large angles

- Tracks reconstructed by the Dose CHarged particle profile (DCH)

-Detector alignment done with aluminum table fixed positions ($\pm 1 \mathrm{~mm}$)
- DCH center aligned with fixed BP positions (ХРММА $=0, \sim 1.5 \mathrm{~cm}$ before exit window)
$-\Omega \sim 6 \cdot 10^{-5} \mathrm{sr}, \varepsilon_{\text {det }}>90 \%$
- DCH trk resolution @ emission point ~ 1mm

LYSO

(Courtesy of V.Patera, 2015)

Bragg Peak monitoring on He beams

- A non negligible production of charged particles at large angles is observed for all beam types
- The emission shape is correlated to the beam entrance window and BP position as already measured with ${ }^{12} \mathrm{C}$
- $\varphi=\mathrm{d} \mathrm{Nall}_{\text {al }}\left(\mathrm{N}_{\text {ions }} \mathrm{d} \Omega\right)$

Beam type/E	$\varphi 90^{\circ}\left(10^{-3}\right)$
He 102	0.6
He 125	0.7
He 145	1
C 160	Nr 2
C 180	ρ^{8}
C 220	2
O 210	3
O 260	5
O 300	10

(Courtesy of V.Patera, 2015)

INnovative Solutions for In-beam DosimEtry in Hadrontherapy Pisa,Torino,Roma"La Sapienza",Bari,INFN INSIDE coordinator: M. G. Bisogni (Pisa)

This project has been supported by Italian MIUR under the program PRIN 2010-2011 project nr. 2010P98A75 and by EU FP7 for research, technological development and demonstration under grant agreement no 317446 (INFIERI)

The
 Instole
 Project

Prompt secondary

 particles emission DOSE PROFILER\downarrow
Tracker +

BI-MODAL MONITORING SYSTEM

Goals:

- To be integrated in the gantry
- To be operated in-beam
- To provide an IMMEDIATE feedback on the particle range

In-beam PET heads

Mono-energetic proton beams
 CNAO

Profile Analysis: p@ 68/72 MeV

PET reconstructed activity

after treatment
β^{+}activity distribution can be determined both in-spill, Inter-spill and after few minutes of Irradiation

Dose Profiler

INSIDE: a combined system x protons and x lons

- β^{+}activity detection: IN-BEAM PET HEADS
- secondary particle tracking: DOSE PROFILER
to provide 3D real-time monitoring in hadrontherapy

MC simulation is essential for system design, development and operation In-beam PET: two-steps technique reduces the simulation time (70x), validated on real data
Dose Profiler: secondary particle signal quantification with ${ }^{12} \mathrm{C}$ beam

In-beam PET first modules (tested at CNAO, May 2015):

- very satisfactory results
- both in-spill and inter-spill and off beam. PET imaes
- adequate coincidence time resolution

The commissioning of the INSIDE system at CNAO is planned by early 2016.

Ackowledged contributions from:

Harmut Sadrozinski (UC Santa Cruz, USA)
Denis Dauvergne (in2p3, France)
Vincenzo Patera (University of Roma "La Sapienza")
... and more
... and the members of the Fiig Group (Pisa University), and in particular:
Valeria Rosso
Maria Giuseppina Bisogni
THANK YOU!

