Silicon Photomultiplier (SiPM) Status and Perspectives

W. Ootani ICEPP, University of Tokyo

RD51 Academia-Industry Matching Event Special Workshop on Photon Detection with MPGDs June 10th, 2015 CERN

Contents

- Introduction
- Properties and Performance
- New Developments
- Application Examples
- Summary

Caveats

- I apologise that I can't cover everything on SiPM in this talk because of the limited time.
- Topics selection is (very much) biased by my personal interests.

Contents

- Introduction
- Properties and Performance
- New Developments
- Application Examples
- Summary

What Is Silicon Photomultiplier (SiPM)?

- SiPM = Multi-pixelated Geiger-mode APD (G-APD).
 - Tiny G-APD cells are connected in parallel together with resistor for selfquenching of avalanche
 - Each G-APD cell is a "binary" device. The same charge from each photon trigger.
 - SiPM output is a sum of signals from triggered G-APD cells.
- SiPM output is proportional to # of impinging photons
 - SiPM = "analogue" device.

5

• Pioneering works by Russian institutes in late 80ies (Golovin, Dolgoshein, Sadygov)

Closer Look a表 Ge 構造

SiPM: Basic Parameters

7

Sensor size (single)	1×1 - 6×6mm²		
Cell size (cell pitch)	10 - 100µm		
Quench resistor	10k - 10MΩ		
Internal gain	10 ⁵ - 10 ⁶		
Photon detection efficiency (PDE)	20 - 50%		
Time resolution (single photon)	O(100ps) (FWHM)		
Dark noise rate	50k - 1M Hz/mm ²		
Bias voltage	20 - 70 V		

Advantages of SiPM

- High photon detection efficiency
- High internal gain
- Insensitive to B-field
- Good single photoelectron resolution
- Fast (good timing resolution)
- Low bias voltage (<100V)
- Low power consumption
- Compact
- Low cost

Weak Points of SiPM

- Large sensor area is difficult.
- Temperature dependence
- Noise (dark noise + correlated noise)
- Radiation hardness
- Saturation for a large number of incoming photons

SiPMs from over The World

Contents

- Introduction
- Properties and Performance
- New Developments
- Application Examples
- Summary

Pulse Shape

• SiPM cell operation cycle (simplified model)

- (1) Photo-generation of carrier \rightarrow avalanche (switch ON)
- 2 Self-quenching (switch OFF)
- ③ Re-charge cell

Pulse Shape

More complicated response in reality due to

- Parasitic capacitance of quench resistor
- Parasitic capacitance of neighbouring cells

• Two components (fast and slow)

- Slow: slow recharge through quench resistor (*R*_q)
- Fast: fast discharge through parasitic capacitance of quench resistor (Cq)
 - Fast component is only visible in case of large R_q

Equivalent circuit for SiPM

S.Seifert et al., IEEE TNS 56(2009)3726

Single Photoelectron Resolution

- Excellent single photoelectron resolution because of
 - High internal gain (= good S/N)
 - Good cell-to-cell gain uniformity
- Can be worsened by electrical noise and pileup due to dark noise and afterpulse
- Practically single photoelectron peak can not be resolved for >6×6mm² sensor area due to increasing dark noise

N.B. Good photoelectron resolution still possible for larger sensor size at low temp.

14

Gain

- High internal gain: 10⁵-10⁶
- Proportional to over-voltage ($\Delta V = V_{\text{bias}} V_{\text{bd}}$)
- Easily measured from single photoelectron charge
- Gain fluctuation is quite small
 - Cell-to-cell uniformity on capacitance and Vbd
 - Small statistical fluctuation in avalanche multiplication (↔Poisson fluctuation in APD)

 $G = \frac{Q_{\text{cell}}}{e} = \frac{C_{\text{cell}}\Delta V}{e}$

over-voltage
$$\Delta V = V_{\text{bias}} - V_{\text{bd}}$$

Photon Detection Efficiency (PDE)

$$PDE = \epsilon \times QE \times P_{trigger}$$

Al conductor

• ε (Fill factor)

- Fraction of active area, typically 50-70%
- Dead area due to signal line, guard ring, trench,...
- QE (Quantum efficiency)
 - Probability of photo-generation of carrier
 - Dependent on reflectivity on Si surface and absorption length in Si

• **P**trigger

- Probability for generated carrier to trigger avalanche
- Dependence on
 - •λ
 - ΔV
 - temperature (small)

Photon Detection Efficiency (PDE)

Key parameters for QE

- Reflectivity on Si surface
 - Reflection can be somewhat reduced with AR coating.
- Absorption length in Si depends on $\boldsymbol{\lambda}$

Photon Detection Efficiency (PDE)

- P_{trigger} (electron) >> P_{trigger} (hole)
 - \rightarrow Higher PDE for carrier generated in p+ layer
- •λ-dependence of absorption length in Si
 - →Different λ -dependence of PDE depending on depth of p+ layer.

Linearity/Saturation

- Good linearity as long as $N_{pe} < N_{cell}$
- Non-linearity (saturation) caused by finite number of cells
- Limiting factors
 - Incoming photon intensity
 - Cell size
 - Recovery time
- Need careful correction for many photons
- How to mitigate saturation \rightarrow smaller cell

Response functions for the SiPMs with different total pixel numbers measured for 40 ps laser pulses

Small Cell SiPM

• 10µn & erell pitch for Hamanatsu MPPC

Fill factor improved by metal quench resistor (MQR)
 The MQR (transparent to light) over active area!

• 15µm cell pitch for KETEK and AdvanSiD

Improved

20um

15µm

10µm

N/A

- Micro-cell: Micro-pixel APD (MAPD) from Zecotek
 - Up to 40,000 cell/mm²

Noise in SiPM

Intrinsic noise source of SiPM

- Dark noise
 - Thermally generated carrier
 - Random
- Correlated noise
 - Optical cross-talk
 - After-pulsing

- Correlated noise increases gain fluctuation and thus increases excess noise factor (ENF).
 - Energy resolution is deteriorated with increased ENF.

$$ENF = 1 + \frac{\sigma_G^2}{G^2}$$

Dark Noise (Dark Count)

- Signal from avalanche triggered by randomly generated carrier
- Two sources
 - Thermal generated
 - Dominates at room temperature
 - Drastically reduced at low temperature (A factor of two every 8 deg. temperature drop)
 - "Field-assisted" generation (Tunnelling)
 - Dominates at T<200K

Dark Noise (Dark Count)

- Dark count rate improved as <50kHz/mm² for recent devices
 - Improved wafer quality
 - Improved processing of epitaxial layer
 - Impurity getter
- Easy solution: Setting higher threshold (>1pe, 2pe, ...)

P. W. Cataneo, WO, et al. IEEE-TNS 61(2014)2657

Optical Cross-talk

• NIR luminescence during avalanche:

- ~3 photons generated for 10⁵ carriers (A. Lacaita et al., IEEE TED 1993)
- Photon can generate carrier in neighbouring cell and then induce another avalanche.
- Superimposed on the primary pulse at the same timing.

Optical crosstalk superimposed on primary pulse

Optical Cross-talk

Optical cross-talk can be reduced by

- Lower bias voltage (at the cost of lower gain/PDE)
- Smaller cell
- Cell isolation by trench filled with opaque material

After-pulsing

- Delayed correlated noise
- Two sources
 - Delayed release of trapped carrier
 - Some carriers from primary Results 1? Afterpulse trapped in a deep trapping level in energy band gap → delayed release → trigger another avalanche
 - ΔV^2 dependence ($N_{carrier} \propto \Delta V$, $P_{trigger} \propto \Delta V$)
 - Solutions
 - Better quality of wafer and epi. layer
 - Reduced gain
 - Delayed optical cross-talk $n(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_N \exp(-t/\tau_2) + A_N \exp(-t/\tau_2)$
 - Solutions: Buried junction to block delayed τ_1, τ_2 carrier diffusion from substrate

direct cross-talk

active

0.05

 $\tau_1 = 8.6 \text{ ns}, \ \tau_2 = 74 \text{ ns}$

Saturday, March 14, 2009

After-pulsing

• After-pulsing drastically reduced for recent Hamamatsu MPPC

K. Sato, et al., VCI2013

- Both cross-talk and after-pulsing drastically reduced at the same device!
- Bonus: Operational at higher bias voltage → higher gain/PDE

Temperature Dependence

- In general, SiPM has
- Temperature depend
 - Breakdown voltage
 - $\Delta V_{\rm bd} / \Delta T = 55 {\rm mV/de}$
 - Gain can be drastically changed when temperature varies, if V_{bias} is not adjusted accordingly.

//deg (AdvanSiD)

- Dark count rate
 - ×2 reduction every 8deg temp. reduction
- Quench resistor
 - Signal shape can be changed.
 - Improved by using metal quench resistor instead of poly-Si (Hamamatsu MPPC)

nperature. 😕

Timing Resolution

- SiPM signal charge generated in very thin layer (~a few µm)
- SiPM has an excellent Single Photon Time Resolution (SPTR).
 - Major component: Gaussian jitter ~O(100ps) (FWHM)
 - Minor slow tail (~O(ns)) from carrier drift from neutral region

F. Acerbi et al., IEEE-TNS 61(2014)2678

S. Cova et al., NIST Workshop on Single Photon Detectors 2003

W.Ootani, "SiPM, Status and Perspectives", Special Workshop on Photon Detection with MPGDs, June 10-11, 2015 CERN

• Strong dependence on ΔV , weak dependence on λ

Timing Resolution

Timing resolution for many photons

Better resolution at higher ΔV (gain, PDE, SPTR)
Saturated due to dark noise or after-pulsing

Radiation Hardness

- Radiation damage of SiPM
 - Neutron, Proton → Bulk damage by Non-Ionizing Energy Loss (NIEL)
 - γ-ray, X-ray → Damage of Si-SiO₂ interface by inoizing energy loss → Charge trap at interface
- Effect of radiation damage
 - Increase of dark noise
 - Change in breakdown voltage, gain and PDE

Radiation Hardness

Effect of radiation damage

- Neutron/proton
 - >10⁸ 1MeV- n_{eq} /cm²: increase of dark noise
 - >10¹⁰ 1MeV-n_{eq}/cm²: loss of single photoelectron resolution
- •γ-ray
 - ~200Gy: local breakdown
- Damage effect for proton: 1-2 orders larger than γ-ray

Possible solution for radiation hardness

- Reduce volume to be damaged
 - Thinning down epitaxial layer ← smaller cell
 - Thinning down substrate
- Better insulator material for surface damage?
- Other material? Not "Si"PM any more...

Contents

- Introduction
- Properties and Performance
- New Developments
- Application Examples
- Summary

Digital SiPM

Digital SiPM (dSiPM) from Philips

- G-APD arrays with integrated electronics
- Features
 - Counting # of fired cells
 - Time stamp of first fired cell (per die)
 - Cell-by-cell active control \rightarrow disable hot cell
 - Active quenching

Photon Detection Efficiency T. Frach, 2007 JINST 7 C01112

Philips digital SiPM DPC6400-22-44 (DPC3200-22-44)

Outer dimensions	32.6×32.6 mm ²			
Pixel pitch	4×4 mm ²			
Pixel active area	3.9×3.2 mm ²			
# of cells	6936(3200)			
Cell size	59.4×32(64) mm ²			
Pixel fill factor	54(74) %			
Tile fill factor	75(55) %			
Operational bias voltage	27±0.5 V			

Dark noise rate distribution

nonition

otani,"SiPM, Status and Perspectives", Special Workshop on Photon Detection w

SiPMs with Bulk Integrated Resistor

- Quenching resistor is integrated in Si bulk.
 - Advantages
 - High fill factor
 - Simpler processing
 - Flat surface →Easier implementation of antireflecting coating)
 - Higher cell density (smaller cell)
 - Less optical cross-talk
 - Issues
 - Need thicker wafer for vertical R length
 - Long recovery time
 - Worse radiation hardness?

SiPM for Deep UV Light

DUV-sensitive MPPC developed for MEG II LXe detector

- Hamamatsu MPPC S10943-4372
- PDE≈20% at λ=175nm
- 12×12mm² (discrete array of four 6×6mm² chip)
- 50µm cell pitch
- Metal quench resistor
- Suppression of after-pulsing/cross-talk
- Operational at LXe temp. (165K)

Four segment chips connected in series on readout PCB

Other New Developments

 New implementation in SensL A proposal for new SiPM structure SiPM for fast timing H. Oide et al., TIPP09 Thinning depletion layer Additional buffer capacitance parallel
 Ptopping additional buffer Separate fast output in addition to standard output \rightarrow Reduced dark noise and afterpulse • Better radiation hardness "Fast output" scheme in Pulse shape for SensL SiPM with SensL SiPM • Higher galmp $-V_0)/e$ fast output coupled to LYSO Acstoutput OI ti<mark>o</mark>nal k ______ Cathode Fast Output $G = (C_{\text{diode}} + C_{\text{buffer}})\Delta V/e$ 20 ns/div p+ layer n+ layer Guard Ring Standard output $V_0 = V_0$ Quenching $G = (C_{\text{diode}} + C_{\text{buffer}}) \Delta V/e$ Resistor Anode n-Substrate S. Dolinsky et al., IEEE-NSS 2013 Buffer

W.Ootani, "SiPM, Status and Perspectives", Special Workshop on Photon Detection with MPGDs, June 10-11, 2015 CERN

Capacitance

ter Ca

Contents

- Introduction
- Properties and Performance
- New Developments
- Application Examples
- Summary

MEG II LXe Detector

- Upgrade for LXe Detector in MEG experiment to measure 52.8MeV γ -ray from $\mu \rightarrow e\gamma$ decay
- Highly granular scintillation readout with VUV-MPPC

MEG II Proposal: arXiv:1301.7225 WO et al., NIMA 787(2015)220

- 256 PMTs (2 inch) replaced with 4092 VUV-MPPCs (12×12mm²)
- Construction to be finished within 2015

W.Ootani, "SiPM, Status and Perspectives", Special Workshop on Photon Detection with MPGDs, June 10-11, 2015 CERN

T2K: Neutrino Oscillation Experiment

- A large number of MPPCs totalling ~56,000 used in several detectors in T2K.
- Working fine for several years
- # of bad channel < 0.28% incl. problem of readout electronics

MPPC readout (FGD)

A. Minamino, Next generation photosensor worksop 2010

Item	Spec		
Active area	1.3 x 1.3 mm ²		
Pixel size	50 x 50 μm²		
Num. of pixels	667		
Operation voltage	70 V (typical)		
PDE @ 550nm	~ 25 %		
Dark count	< 1.35 Mcps		
(Gain = 7.5 x 10 ⁵)	@ 25 deg.		
	(Thre. = 0.5 p.e.)		
Num. of device	56,000		

S10362-13-050C Developed for T2K

Produced by Hamamatsu Photonics

17

T. Kikawa, Next generation photosensor worksop 2012

Detector #	# of ch	# of bad ch		Fraction of bad ch	
		2010	2012	2010	2012
INGRID	10796	18	37	0.17%	0.34%
FGD	8448	20	20	0.24%	0.24%
ECAL	22336	35	58	0.16%	0.26%
POD	10400	7	28	0.07%	0.27%
SMRD	4016	7	15	0.17%	0.37%
計	55996	87	158	0.16%	0.28%

Perspectives", Special Workshop on Photon Detection with MPGDs, June 10-11, 2015 CERN

ILD Scintillator Calorimeters

- Highly granular calorimeter for ILC detector based on Particle Flow Algorithm (PFA).
 - AHCAL: $\sim 10^7 \times (30 \times 30 \times 3 \text{mm}^2 \text{ scinti. cell} + \text{SiPM})$
 - ScECAL: ~10⁷ × (5×45×2mm² scinti. strip + SiPM)
- SiPM technology allows
 - SiPM and readout electronics are integrated in active volume
 - Calorimeters in solenoid field of 4T
- ScECAL

AHCAL

FACT: First G-APD Cherenkov Telescope

- SiPM-based camera for Imaging Atmospheric Cherenkov Telescopes (IACTs)
- 1440 pixel modules based on MPPC with light collecting cone.
- Integrated electronics: trigger and digitisation (DRS4 chip)
- First operation on Oct. 11, 2011 (full moon)

MPPC S10362-33-050C

Th. Krähenbühl, Photodet2012

1440 pixels glued onto front window

Summary

- Vast progress in development of SiPM technology since last two decades.
- SiPM technology is mature enough in terms of both performance and cost to be employed in many projects.
- Many advantages, while some weak points to be overcome.
 - Dark noise
 - Correlated noise
 - Saturation
 - Radiation hardness
 - Temperature dependence
 - Limited sensor area

Many new developments and new applications are on-going.

Summary

- Vast progress in development of SiPM technology since last two decades.
- SiPM technology is mature enough in terms of both performance and cost to be employed in many projects.
- Many advantages, while some weak points to be overcome.
 - Dark noise 😊
 - Correlated noise
 - Saturation
 - Radiation hardness 😥
 - Temperature dependence 😥
 - Limited sensor area 😐
- Many new developments and new applications are on-going.

Summary

- Vast progress in development of SiPM technology since last two decades.
- SiPM technology is mature enough in terms of both performance and cost to be employed in many projects.
- Many advantages, while some weak points to be overcome.
 - Dark noise 😊
 - Correlated noise
 - Saturation
 - Radiation hardness 😥
 - Temperature dependence 😥
 - Limited sensor area 😐
- Many new developments and new applications are on-going.

Thank you for your attention!

Questions?

More complete reviews

- V. Puill, "Tutorial SiPM", NDIP2014
- G. Collazuol, "Status and Perspectives of Solid State Photo-detector", RICH2013

Backup

Over-Saturation?

Some reports on over-saturation

N_{fired} > N_{cell} with fast laser (32ps pulse width → No chance of cell recovery)

L. Gruber et al. NIMA737 (2014) 11

Even Smaller... Micro Cell SiPM

Micro-pixel APD (MAPD) from Zecotek

- Cells inside epitaxial layer
- No quenching resistor. Directly biased p-n junction under each cell is used to quench avalanche instead.
- up to 40,000 cells/mm²

Z.Sadygov, et al., Tech. Phys. Lett. 36(2010)528

Large Area Sensor

- SiPM sensor area is limited by dark noise and sensor capacitance.
- Cost per unit area is already comparable to PMT!
- Solutions for large area sensor
 - Array
 - Discrete or monolithic
 - Need individual channel readout
 - Series connection of multiple sensors
 - Working as a single sensor \rightarrow Reduction of # of readout channel
 - Reduced sensor capacitance
 - Need operation at low temp to reduce dark noise

Hamamatsu VUV-MPPC (total area 12×12mm², four seaments)

Fall time ~25ns

Series connection of SiPM segments

WO et al., NDIP2014

W.Ootani, "SiPM, Status and Perspectives", Special Workshop on Photon Detection with MPGDs, June 10-11, 2015 CERN

100ns

MEG II Pixelated Scintillator Detector

- Timing counter for 52.8MeV positron from µ→eγ deagy in MEG II
- ×512 fast scintillator plates, each of which is readout by multiple SiPMs connected in series
- Excellent timing resolution of 30-40ps demonstrated Single counter with prototype
- To be constructed in 2015

MEG timing counter

Plastic scintillator bar (40x40x900mm³) + PMT MEG II timing counter (×512 counter modules) MEG II Proposal: arXiv:1301.7225
WO, NIMA 732(2013)146
M. De Gerone, WO et al. JINST9(2014)C02035
P. W. Cattaneo, WO et al., IEEE-TNS 61(2014)2657

BC422 (120x40x5mm³)

6 SiPMs connected in series (AdvanSiD AMSASD-NUV3S-P50, 3×3mm², 50µm

V_{bd} distribution for ~4000 SiPMs

49