Photocathode manufacturing at the CERN workshop

Some physics, technology and cooking*)

Christian Joram CERN PH/DT

11 June 2015

*) Disclaimer:

(1) I did my last evaporation in 2009 and may have forgotten details.

(2) I'm not - and never was - an expert for gaseous photodetectors.

See also: A. Braem et al., Technology of photocathode production, Nucl. Instr. Meth. A 502 (2003) 205–210

Outline

- Short recap of photodetection
- Production of reflective CsI photocathodes for gaseous detectors
- Production of visible light photocathodes for vacuum phototubes

Photoelectric effect

Absorption of photon Emission of atomic electron

 $E_e = h \nu - E_b$

Photo effect in gases (liquids)

Threshold $\sim E_b$ relatively high.

 $E_y = hv > 6$ eV, $\lambda < 200$ nm

Examples: TMAE, TEA, admixed to counting gas of MWPC

Photo effect in (crystalline) solids

valence band bottom of conduction band E_{Fermi} auto polarization (pn doping), optional external electric field Egap e h A. Internal photo effect (electron stays inside the medium) Threshold = band gap E_{gap} , relatively low, e.g. 1.2 eV (Silicon) B. External photo effect (electron is ejected from the medium into the vacuum) valence band E_{Fermi} Egap e h vacuum E_{affinity} level

Application: Solar cell, photodiode, SiPM, … Application: Photomultiplier, HPDs,

Opaque photocathode (also called reflection mode)

Example: CsI photocathodes (300 nm thick)

Thickness not critical.

Possible limitation: resistivity of layer.

Different photocathodes and their thresholds

- Photon detection involves often materials like K, Na, Rb, Cs (alkali metals). They have the smallest electronegativity \rightarrow highest tendency to release electrons.
- Most photocathodes are VERY reactive; Exceptions: Si and CsI.

Reflective CsI photocathode for MWPC / MPGD based photodetectors

Requirements:

- High QE over 7.75 6.2 eV range
- Uniform QE response
- Stable in time (years)
- Cost effective for large area photodetection planes (modules up to $\sim 60x60$ cm²)
- Robust and transferable (in moisture free environment)
- Very sensitive to humidity !

CsIsubstrate : Printed circuit board !

- Ni and Au barrier layers on top of Cu pads $(\sim 8x8 \text{ mm}^2)$
- Standard Electro-plating technology

- Vacuum baking limited to 60°C
- \rightarrow residual impurities left under the CsI coating

• Rough surface, cleaned ultrasonically under strong detergent

CsI vacuum evaporation process

- High vacuum technology $({\sim}10^{-7}$ mbar)
- Simultaneous evaporation from 4 CsI sources:
- \rightarrow 300 nm uniform (\pm 10%) thickness distribution over the full surface
- Slow deposition rate $({\sim}1 \text{ nm/s})$:
- Min. CsI dissociation
- \rightarrow Little or no reaction with residual gasses
- Thermal treatment during and after CsI deposition $({\sim}8 \text{ hrs at } 60^{\circ}C)$
- In situ QE evaluation under vacuum
- In situ encapsulation under dry Argon before transfer onto MWPC

Residual gas before CsI deposition on HMPID PC38

The CsI production plant

- Photocathode modules up to 60 x 60 cm²
- Transfer facility of CsI films under inert gas
- Max. production capacity of 2 PCs /week

In situ CsI QE evaluation
under vacuum (summer 2002)

Some QE results (prototype planes for ALICE HMPID)

Thin Film Visible Light Cathodes

All classical VL photocathodes are based on alkali-antimonides.

Their very reactive nature has a number of consequences:

- The alkalis must never be in contact with air (not even in minute quantities
- The K, Na, Cs and Rb vapor are generated from dispensers which contain the alkali metal bound in a non-reactive metal chromate. The dispenser releases the vapor only once heated to $>$ ~500 $\rm ^{\circ}C$.
- The vacuum (prior to evaporation) must be very good $(<10^{-8}$ mbar) and not contain reactive stuff like H_2O , O_2 , C_xH_y . Ideally just H_2 .
- The substrate surface, usually consisting of glass, quartz, Sapphire, and a certain material thickness below must be clean (i.e. free of water, hydrocarbons, anything else). \rightarrow The substrate must be baked out, if possible at T>300°C.
- The photodetector must be sealed in-situ. Even short contacts with any reactive atmosphere will completely destroy the photocathode.

Photo SAES getters

• During photocathode processing, the substrate must be kept at elevated temperature (T~130-160°C, process dependent).

Phototube fabrication

comparison of process types (very schematic)

Internal - PMTs

mmmmmmmmm

external(transfer) - HPDs wwwwwwwww Indium seal TTI Indium seal **MUMMMM MAMMMM**

Preparation of HPD envelopes

- Polishing :
	- metal parts for high E fields environment (excessive noise produced by ionisation/excitation of residual alkali vapours)
	- Glass window (as standard cleaning procedure)

• Chemical etching

- On glass parts: NaOH, aqua regia, tartaric acid solution.
- On metal parts: conc. HCl, $CH_3COOH/HNO_3/HCl$ solution.
- Deposition of connection layer ITO $(Rb₂Te)/Cr/glue$ pads
- **Deposition of Ni** + Au interdiffusion layers on indium sealing surfaces

Procedure allows to fully recycle used envelopes and bases.

The CERN plant for external processes

- Coat substrates up to ϕ 10"
- Adapted to UV–VIS PCs, from 200 to 600 nm
- Press mechanism for cold indium encapsulation (2.5 tons)
- Production capacity limited to 1 PC / week

No other materials than stainless steel, copper, ceramic!

 $\overline{\mathbf{w}}$

End vacuum (after bakeout) <10-9 mbar.

UHV processing chamber

"external" photocathode process

Co-evaporation process (K₂CsSb)

- Window at 160 °C
- Sb : ballistic evaporation K, Cs: diffuse evaporation
- Co-evaporation of K and Sb \rightarrow K₃Sb
- Cs evap. \rightarrow K₂SbCs
- Optimisation of pc current. \rightarrow 2 – 3 iterations of Sb, K and Cs evap.

Permanent photocathode current monitoring

PC87

22

Radial dependence of HPD (PC68) QE for $\lambda = 230$, 290 and 350 nm.

• QE uniformity over the surface is better than 10%

Photocathode 96 Rb2Te (ITO - 3nm)

Various prototype HPD-like tubes produced (up to 10 inches)

Cherenkov Light Ultraviolet Experiment New 3D axial PET concept Underwater Neutrino Detector $CLUE =$

Conclusions

- CsI photocathode production is a very mature and reproducible technology.
- The CERN plant allows to routinely produce CsI PCs up to 60 x 60 cm^2 .
- Alkali-antimonide visible light photocathode production is technologically challenging. It requires lots of dedicated infrastructure and experienced manpower.
- A plant at CERN is available but has not been used since 6 years. Experts have retired or went to other fields.
- Re-activation and transformation for gaseous photodetectors is not excluded but would require very substantial efforts.