

Wir schaffen Wissen – heute für morgen

Gemma Tinti on behalf of the SLS Detector Group

Hybrid pixel detectors for photon science at synchrotrons and FELs

RD51 meeting 10 June 2015

- Synchrotrons (SwissLightSource as example) and typical experiments
- FELs (Swiss-FEL as example)
- Requirements for detectors
- Development of hybrid pixel detectors at PSI
- Outlook on upgrades of machines and requirements for future detectors

The Swiss Light Source

288 m circumference Xrays 3 eV – 45 keV

Synchrotron source:

- Huge number of "weak" photon bunches (a bunch every 2 ns)
- Bunch length is 20 ps
- Photons impinge on the detector with a semi-continuous time distribution

SLS beamlines

 Coherent Diffractive Imaging (CDI) Small Angle X-ray Scattering (SAXS) Scanning SAXS Protein Crystallography X-ray Photon Correlation Spectroscopy (XPCS)

Protein Crystallography

医素派海

More than 900 Protein Structures Solved at Beamline X06SA (October 2011)

 SLS^H

http://www.nei.ch/eli Swiss Light Source at Paul Scherrer Institut Switzerlang المنابعة
التواليد **Contract** 體職 30 12 21 22 22 情報 氯 嘛 總 感 劃 海の 橋 橋 POR 数 练广 安全 Ń 鸐 **CALL DEL PORT** $57.$ **A** \mathbf{a} 黍 **SINGH** 10 15 $\sqrt{2}$ 头鹞 W Sta St 巍 **GO COMP** 辘 **MA-992 AUF** 12 600 学 **Company** ġ, 北美 £ Ş. $\frac{1}{2}$ \bullet \circ 安全局 来き来き € 福息 奇勇 戮 變質 像 曝 美溪 系统 秘 \mathbf{z} **16** 魏 **PASSER N** \mathscr{M} \bullet **The Story of Strategy** 安全 **CARD** 婆 **Com (2):** 委 学校 彞 \sqrt{K} .

泰京本宗博帝长长高心物

more than 900 protein structures solved at PXI beamline at SLS

~2/3 using Pilatus II 6M

compiled by Sandro Waltersperger Oct 2011

لو لو لو لو لو

Ptychography – Coherent imaging

- Achieves imaging resolution of ~10 nm
- Can be combined with CT for 3D imaging

Large area, high resolution Ptychography

10

SwissFEL: New generation X-ray free electron laser

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT **Requirements for X-ray detectors at synchrotrons and FELs**

- Energy range: 2 40 keV (@ SLS and SwissFEL), up to 150 keV (ESRF/Spring 8)
- Single photon sensitivity: noise << signal ~ O(100 e-)
- Sufficient angular coverage: large area (40 x 40 cm²)
- Spatial resolution: millions of pixels (75 x 75 um²)
- High frame rates: Tens of kHz
- Ability to gate or synchronization to experimental machines

Synchrotrons:

• High count rate capability: count rates 1 MHz/pixel

FELs:

• High dynamic range: 10⁴ 12 keV photons/pixel/pulse

Swiss Light Source Detectors

Sensor: Si and high Z materials

- Absorption of the X-rays in sensor: mainly photoelectric effect (<40 keV), 'pointlike'
- The energy is converted into electric charge
- About 3.6 eV to generate an e-h pair in silicon
- Signal is 1000 e for 3.6 keV photons
- Study of high Z materials (CdTe, GaAs) to

 300 um $\left\{\n\begin{array}{c}\n\lambda + \text{backplane}\n\end{array}\n\right\}$

15

- Disadvantages:
	- Pile-up for high photon intensities
	- Minimum pixel size due to charge sharing between pixels
	- Minimum detectable energy

75 x 75 um2 pixel size

Threshold calibration and noise

- The **preamplifier gain** in EIGER is user configurable to scan a different range of photon energies
- The **threshold setting** can be calibrated into photon energy
- Threshold is calibrated to be uniform in the detector and its dispersion is negligible (20 e⁻) in respect to noise
- Noise decreases with higher pre-amp gain
- As the noise at high gain is ~100 e, we see photons >3 keV

Rate correction as a function of energy

The future: charge integrating detectors for FELs

- Swiss-FEL will deliver 10¹¹ photons/pulse in ~hundreds of fs
- Photon counters cannot be used
- Development of charge integrating detectors with charge information
- For the detector the main challenges are:
	- Single photon resolution
	- Dynamic range of 10⁴ photons
- In exposure 'dynamic gain switching' is the solution

JUNGFRAU at ESA @ SwissFEL

JUNGFRAU

J.H. Jungmann-Smith et al, JINST 9, P12013

Detector returns the charge info (ADC) and the gain used

Automatic gain switching:

- White visible light illumination
- Increasing integration time

→ Covers *dynamic range* of *> 4 orders of magnitude* **!**

Calibration of the **integrated charge vs number of photons** needs to be studied and applied

Count rate of 20 MHz/pixel Targeted **frame rate** of **2 kHz**:

Factor 20 better than EIGER! Use at synchrotrons is under study!

Noise of JUNGFRAU

Small pixels: the MÖNCH detector

- 25×25 um² pixel size
- Active area: 4x4 mm2
- 160 x160 pixels
- Active area 1x1 cm2
- 400 x 400 pixels
- Frame rate foreseen up to 6 kHz
- Goal 2×3 cm² chip
- Smallest pixel size of hybrid pix detectors: bump bonding yield is >99.9%
- Low noise detector 30 e noise RMS : minimum photon energy 500 eV!
- Plan larger systems as a low energy detector
- High spatial resolution: algorithm to exploit the charge shared between more pixels allow for 1um

spatial resolution

PAUL SCHERRER INSTITUT **Perspective for the future accelerators**

FELs are getting into operation now and plans to upgrade many synchrotrons to diffraction limited light sources:

Applications like **ptychography** and **protein crystallography** are hungry for **brightness** and **coherence**

- High flux ptychography due to increased coherent flux-> higher rate capabilities (100-1000 MHz/pixel) needed for the detector.
- Protein crystallography beamlines will increase the flux O(10-100) by using a multilayer monochromator instead of Si monocrometor to allow higher flux PX -> higher rate capabilities needed for the detector.
- Study of dynamics -> deadtime free detector operation at very fast frame rates (50-100 kHz)
- Angular coverage and a good spatial resolution (when increasing the detector distance from the sample) will be needed -> large area detectors (49 Mpixels $\sim 60 \times 60 \text{ cm}^2...$).
- The coherent flux increase at some synchrotrons will be at higher photon energies -> high quantum efficiency up to 30/40 keV
- Spatial resolution is improved by smaller pixel sizes with interpolation of the charge shared between pixels ->replacement of CCDs with pixel detectors
- Development towards low energies (~0.5 keV) will be favored ->replacement of CCDs

Swiss Light Source Detector Group

More Information.

The European XFEL challenge & AGIPD

27 000 bunches/s with 4.5 MHz repetition rate

200 x 200 um2 pixel size

- Single photon sensitivity
- Dynamic range >104
- Low noise
- High radiation tolerance (100 MGy)
- 5 MHz frame rate:

Storage of 352 images on pixel cells and readout in the idle time

Study of performance of EIGER as a PEEM detector

- Photo emission microscope from ELMITEC
- Feasibility studies
- Source UV lamp/ synchrotron beam
- Vacuum achieved: 5x10-9 mbar
- Ongoing efforts to reach 10^{-10} mbar

• Single chip: active area 1.92 x1.92 cm2 • Round board is vacuum barrier

PEEM with EIGER

H. Marchetto

FoV=25 µ**m, 10 sec, 5 avg**

Graphene/SiC

FoV=50 µ**m, 5 sec, 200 avg**

Pb/Si(111)

PilatusII6M at the Protein Crystallography Station

made continuous shutter-less operation possible at PX

Sold and further developed By Dectris

Small pixels: the MOENCH detector

Hybrid SLS detectors

