

ALICE upgrade overview

A. Kluge, March 18, 2014 For the ALICE collaboration

Outline

Upgrade specifications

Upgrade overview

- Upgrade architecture
- Slides taken from:
 H. Äppelshauser, J-P. Cachemiche, A. Kluge, G. Martinez,
 P. Moreira, L. Musa, W. Riegler, W. Trzaska

ALICE & run 1/2

Upgrade strategy

- High precision measurements of rare probes at low p_t
- Cannot be selected with a trigger
- Require a large sample of events recorded
- Target
 - Pb-Pb $\rightarrow \geq 10 \text{ nb}^{-1} \rightarrow 8 \times 10^{10} \text{ events}$
 - pp (@5.5 TeV) $\rightarrow \geq 6 \text{ pb}^{-1} \rightarrow 1.4 \times 10^{11} \text{ events}$
- Gain factor 100 in statistics

Upgrade strategy

- Upgrade ALICE read-out and online systems
 Upgrade in LS2 2018/19
 - Read-out all Pb-Pb interactions at
 - 50 kHz (L = 6 x 10^{27} cm⁻¹s⁻¹) with min bias trigger
 - Online data reduction ← no filtering
 - Reconstruction of clusters and tracks

- Improve vertexing and tracking at low p_t
 - New inner tracking system

Lol & TDR

Inner tracking system

New ITS Layout

PIXEL Chip - technology

ALICE

Monolithic PIXEL chip using Tower/Jazz 0.18 μm technology

- feature size 180 nm
- gate oxide < 4nm
- metal layers 6
- high resistivity epi-layer
 - thickness 18-40 μm
 - resistivity 1-6 k Ω×cm
- "special" deep p-well layer to shield PMOS transistors (allows in-pixel truly CMOS circuitry)
- Several prototype architectures
 - ALPIDE self-triggered or global shutter
 - MISTRAL/ASTRAL rolling shutter

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

Power density < 50 mW/cm²

New ITS – pixel prototype chips & experimental results

pALPIDE: sizeable prototype of final chip (digital output) Explorer: prototype chip with analogue output

Measurements at DESY test beam (4.4 Gev electron beam) - Sep 2013

Explorer chip, performance of pixel chip from analogue output, pixel size: $20 \times 20 \ \mu m^2$

pALPIDE chip, performance of pixel chip from digital output, pixel size: 22 x 22 μ m²

Threshold / Noise: 20

Detection efficiency: 99.7%

Fake hit rate < 10⁻⁸

Spatial resolution ~ $5\mu m$

Readout – general scheme and data throughput

TPC

TPC upgrade

TPC-present limitation & upgrade

- drift time (electrons) = 100 μs
- after gating grid closed until 280 µs
 - to prevent back drifting ions into drift region
 - and space charge distortion
- \rightarrow total time 280 µs \rightarrow 3.5 kHz read-out rate

- avg. interaction rate 50 kHz \rightarrow 20 μ s
- drift time = 100 µs →
- pile-up
 continuous trigger-less read-out

multiple GEM principle

- Fast electron signal (polarity!)
- no "ion tail"
- No "coupling to other electrodes"
- → Gas gain about a factor 3 lower than in MWPC

GEMs are made of a copper-kapton-copper sandwich, with holes etched into it

Electron microscope photograph of a GEM foil

4 GEM simulation

TPC front-end card

- ~ 500.000 channels @ 50 kHz read-out rate
- 3400 front-end cards & ~ 17.000 SAMPA ASICs

Muon Forward Tracker - MFT

MFT and Muon-Spectrometer

Silicon pixel tracker in acceptance of Muon Spectrometer

between Interaction Point and Hadron Absorber

March 18, 2014

A. Kluge

MFT concept

Extrapolating back to the vertex region **degrades the information** on the kinematics

MFT concept

MFT layout

 Based on MAPS: common development with ITS

Read-out based on GBT links

Muon chambers - MCH

Muon chamber

- ~1.000.000 MWPC
- upgrade to continuous read-out @ 100 kHz hit rate
- Replacement of the front-end by ~ 33.000
 SAMPA ASIC
- Replacement of active patch panels (first level of data concentration)
 - based on GBTs or electrical e-links
- Replacement of data concentrator by CRUs

muon chamber

Fast interaction trigger

Fast interaction trigger - FIT

Fast interaction trigger - FIT

Photonis PLANACON® XP85012 or XP85112

Read-out & Trigger Upgrade architecture

Specifications

- Interaction rate Pb-Pb:
 - from 8 kHz \rightarrow 50 kHz
- Trigger rate Pb-Pb:
 - from ~3.5 kHz \rightarrow 50 kHz
- All interactions are read AND recorded
- Interaction and trigger rate pp:
 → 200 kHz
- Data rate driven by Pb-Pb
- TPC is read continuous & trigger less

Run1 and Run2 architecture

Common read-out unit - CRU & long trigger latency

Common read-out unit - CRU & & short trigger latency 🧶

Upgrade architecture: det. spec. readout

Upgrade architecture: full read-out system

Upgrade architecture: system components

DDL

- common
- Off-detector read-out
 - common readout unit or custom
- Front-end links
 - versatile link (GBT) or custom
- CTP & LTU & TTS
 - fast serial trigger link (FTL) & TTC
 - **On-detector electronics**
 - SAMPA & custom

Common Readout Unit – CRU & Detector Data Link - DDL

Read-out architecture

- Standard interface to DAQ/DCS
 - Detector Data Links DDL 1, 2 already developed
 - 2.125 and 4.25/5.3125 Gb/s
 - DDL3 based on commercial standard
 - PCIe plug-in modules
- Standard interface to Trigger

AMC40

AMC40 (LHCb)

- 4 x AMC40 \rightarrow
- 1 x motherboard → 14 motherboards →
 1 ATCA crate
- Trigger and timing distribution is via back plane

Front-end (FE) links & Trigger and Timing Distribution System (TTS) Links

Common components

Front-end (FE) links & Trigger and Timing Distribution System (TTS) Links

GBT & Versatile link

GBTx

GBT-SCA: slow control adapter

Versatile link components: VTTx & VT

Versatile link components: VTTx & VTRx

CRU & GBT

Links

Detector	DDL1	DDL2	DDL3	CRU-FE-links	TTS-FE links
	$2.125~{ m Gb/s}$	$4.25-5.3125 { m ~Gb/s}$	10 Gb/s	$3.2~{ m Gb/s}$	$3.2 ~\mathrm{Gb/s}$
TPC			1200	6336	1764
MCH			250	500	500
ITS			*60	*184	0
MID			1	16	16
ZDC			1	1	
TOF		72			
FIT		2			
ACO	1				
TRD			36	1044	0
EMC		20			
PHO		16			
HMP	14				
Total	15	110	1555	8081	2244

Central Trigger Processor (CTP) & Local Trigger Processor (LTU)

CTP & LTU

CTP & LTU: based on high performance FPGA processor Logic combinations fully programmable

System description: Trigger signals

Level	Trigger	Trigger	Trigger	contributing
	Input	output	decision	detectors
	to CTP	at CTP	at detector $*$	
	[ns]	[ns]	[ns]	
LM	425	525	775	FIT
L0	1200	1300	1500	ACO, EMC, PHO, TOF, ZDC
L1	#6100	#6200	[#] 6400	EMC, ZDC

• LM .. pretrigger wake up signal for TRD: by FIT only

- L0 .. main trigger signal: by FIT & additional trigger inputs
- L1.. optional EMC-jet and ZDC contribution: long latency

Common TPC/MCH readout ASIC

SAMPA

- common read-out ASIC
 - TPC & muon chambers

SAMPA

Analog specifications are almost identical

SAMPA

- TPC & muon chambers (MCH)
 - 32 channel amplifier-shaper-ADC-DSP
 - triggerless/continuous & triggered readout
 - < 600 e @ 25 pF (TPC), < 950 e @ 40 p (MCH)
 - bi-polarity input
 - 10 bit ADC 10/20 Msamples/s
 - on ASIC base-line correction and zero suppression
 - 4 x 320 Mbit/s serial outputs
 - 130 nm TSMC CMOS process

Detector Summary

Sub-detector parameter overview

Det	triggered by	Pb-Pb RO	TTS	CRU used
	() = optional	rate [kHz]	$\mathrm{FTL}/\mathrm{TTC}$	
TPC	(L0 or L1)	50	FTL	у
MCH	(L0 or L1)	100	FTL	У
ITS	L0	100	FTL	*y
MID	L0 or L1	>100	FTL	У
ZDC	L0	>100	FTL	У
TOF	L0 or L1	>100	FTL	n
\mathbf{FIT}	L0 or L1	100	FTL	n
ACO	L0 or L1	100	TTC	n
TRD	LM&(L0 or L1)	39	FTL&TTC	у
EMC	$^{\#}\mathrm{L0\&L1}$	46	TTC	n
PHO	$^{\#}\mathrm{L0\&L1}$	46	TTC	n
HMP	$^{\#}\mathrm{L0\&L1}$	2.5	TTC	n

Sub-detector upgrade effort

Det	#	Run1&2	upgrade	FE ASIC	FEC	ROC
	channels	RO rate	RO rate			
		[kHz]	[kHz]			
TPC	5×10^5	3.5	50	17000 SAMPA	3400	CRU
MCH	10^{6}	1	100	33000 SAMPA	500	\mathbf{CRU}
ITS	$25 imes 10^9$	0.5	100	25000 ASICs	184	\mathbf{CRU}
MID	21×10^3	1	100	FEERIC	234	\mathbf{CRU}
\mathbf{ZDC}	22	8	100		commercial&1 ZRC	CRU
TOF	1.6×10^5	40	100			72 DRM
\mathbf{FIT}	160 + 64	80	100		upgrade	DRM(TOF)
ACO	120	100	100			
\mathbf{TRD}	1.2×10^{6}	1	50			\mathbf{CRU}
\mathbf{EMC}	18×10^3	3.7	46			
\mathbf{PHO}	17×10^3	3.7	46			
HMP	$1.6 imes 10^5$	2.5	2.5			

Summary

- Rate upgrade: 50 kHz
- New ITS & MFT
- TPC GEMs & continuous, trigger-less read-out
- Muon system electronics upgraded
- Common component approach widened

Backup

Radiation Levels

Radiation levels

Element	r	Z	TID	1 MeV neq	$>20 \mathrm{MeV}$ had.
	(cm)	(cm)	(krad)	(cm^{-2})	$(\rm kHz/cm^2)$
ITS L0	2.2	[-13.5, 13.5]	646	$9.2 imes 10^{12}$	1600
ITS L1	2.8	[-13.5, 13.5]	387	$6.0 imes10^{12}$	1000
ITS L2	3.6	[-13.5, 13.5]	216	$3.8 imes10^{12}$	500
ITS L3	20	[-42.1, 42.1]	13	$5.2 imes10^{11}$	28
ITS L4	22	[-42.1, 42.1]	9	$5.0 imes 10^{11}$	24
ITS $L5$	41	[-73.7, 73.7]	6	4.6×10^{11}	10
ITS $L5$	43	[-73.7, 73.7]	4	4.6×10^{11}	9
MFT D0	2.5	-50	395	$6.7 imes10^{12}$	1100
MFT D1	2.5	-58	392	$6.4 imes10^{12}$	1040
MFT D2	3.0	-66	767	$5.9 imes10^{12}$	760
MFT D3	3.5	-72	427	$4.3 imes10^{12}$	520
MFT D4	3.5	-76	541	$4.8 imes 10^{12}$	560
FIT1	5	-80	181	$3.0 imes10^{12}$	280
FIT2	5	340	103	1.4×10^{12}	200
TPC In	79	[-260, 260]	2.1	$3.4 imes10^{11}$	3.4
TPC Out	258	[-260, 260]	0.3	$5.2 imes10^{10}$	0.7
TRD	290	[-390, 390]	0.4	$4.8 imes10^{10}$	0.54
TOF	370	[-370, 370]	0.13	$2.6 imes10^{10}$	0.26
EMCAL	430	[-340, 340]	0.06	$1.5 imes 10^{10}$	0.02
MCH S1	19	-536	0.42	$4.2 imes 10^{11}$	3
MCH S2	24	-686	0.19	$1.4 imes 10^{11}$	1
MCH S3	34	-983	0.14	$1.6 imes 10^{11}$	0.9
MCH S4	45	-1292	0.18	$3.0 imes10^{11}$	1
MCH S5	50	-1422	0.91	$2.5 imes10^{11}$	0.7
CTP Rack	600	-1295	4.8×10^{-3}	7.8×10^{9}	0.03

Factor 10 safety on TID & neq: TID/neq numbers factor 2 higher than ALICE-Run1/2 design rates

Factor 2 safety on >20 MeV hadrons: factor 3 higher than ALICE-Run1/2 design rates

Table 3.1: Total Ionizing Dose (TID) and 1 MeV neq hadron fluence for $10nb^{-1}$ PbPb + $6pb^{-1}pp + 50nb^{-1}pPb$ collisions (including a safety factor 10) as well as high energy hadron fluence for 50 kHz PbPb collisions (including a safety factor 2).

Radiation

Radiation

Radiation

Detector Summary

Muon identifier

DDI 3

Data

MUX

FEC

FE-ASIC

- 21.000 channels (RPC)
- replacement of front-end electronics to slow down aging speed of RPCs
 - by operation in avalanche mode reducing charge produced in the gas
- Front-end ASIC is replaced by FEERIC ASIC
 - with amplification
- Readout out at 100 kHz @ 0 % busy

Muon identifier

- Replacement of 2 levels of data concentrators by 234 new front-end cards and CRUs
- Small scale system with FEERIC will be tested already in run 2

Muon identifier

2 GBT links @3.2Gb/s, 1 FPGA, 1 LVDS output

2 GBT links @3.2Gb/s, 1 FPGA, 1 LVDS output

1 TDS, CDH builder, 1 DDL3
TRD

DDL 3

• 1.151.000 channels

- rate upgrade from 8 kHz to 50 kHz with 23 % busy
- triggered operation (LM & L0)
- FE electronics unchanged, but data load reduced with firmware change
 - pre-processed data (tracklets) are transferred only or
 - partial read-out based on electron region candidates
- Data MUX is CRU

TRD

TOF

DDI 2

Data

MUX

• ~160.000 MRPC pads

FEC

FF-ASIC

- rate upgrade from 10s of kHz to 100 kHz PbPb without dead time
 - max limit by HPTDC in FEC is 265 kHz
 - rate limit comes from VME based read-out and data format
- upgrade firmware for data format and VME protocol
- replace 72 2nd level data concentrator boards (DRM)

TOF

Detector developments: ITS

• 25 G pixels

FEC

- complete new detector
 - ASIC, sensor, read-out, mechanics cooling
- triggered @ L0
- Detector module sends data 1 Gb/s links
 - base-line electrical
 - close to detector link interface needed

Detector developments: FIT

DDI 2

Data

MUX

Sensor FE-ASIC

FEC

- 64 Scintillators
- Provides interaction trigger
- timing reference for TOF
- multiplicity measurement
- New detector implementation
 - new front-end
 - RO based on TOF read-out scheme

Detector developments: ZDC

• 22 channels

- outside of radiation zone
- use NIM, VME and commercial electronics
- provides timing trigger
- upgrade from 8 kHz to 16 kHz by introduction of multi-event buffers in firmware (run 2)
- to 100 kHz without dead time
 - commercial digitizers with on board FPGAs
 - TDC model firmware upgrade
 - replacement of data concentrator card (ZRC) and
 - use CRU

Detector developments: EMC

DDL 2

Data

MUX

FFC

• ~ 18.000 channels

- provides trigger
 - L0 input: sum
 - L1 input: shower and jet
- has already been upgraded to 46 kHz @ 15 % busy
 - front end (ALTRO) limits to 50 kHz
 - data reduction by on-line data evaluation
 - replacement of data concentrators by SRU (Scalable Read-out Unit, RD51)

Detector developments: PHO

• ~ 17.000 channels

- provides trigger
 - L0 input: sum
- taking same approach as EMC to 46 kHz @ with busy time
 - front end (ALTRO) limits to 50 kHz
 - data reduction sample number reduction
 - replacement of data concentrators by SRU (Scalable Read-out Unit, RD51)
 - replacement of trigger region units (TRU)

Detector developments: HMP

- ~160.000 channels MWPC
- RO rate to 2,5 kHz
- No detector/electronics change