

The Forward RICH Detector for the PANDA Experiment

Sergey Kononov on behalf of the PANDA FRICH group *Budker Institute of Nuclear Physics Novosibirsk State University SSC RF ITEP of NRC "Kurchatov Institute"*

9th International Workshop on Ring Imaging Cherenkov Detectors (RICH 2016)

September 5, 2016

PANDA detector PID

Requirements for PANDA Forward RICH

- Charged PID in the Forward Spectrometer
- $|\theta x| < 10^{\circ}, |\theta y| < 5^{\circ}$
- 3 m² transverse acceptance
- Working momentum range for 3σ separation
 - $-\pi$ /K: 2÷10 GeV/c
 - $-\mu/\pi$: 0.5÷2 GeV/c
- Low material before the PANDA EMC

A physics case

Baseline conceptual design

Radiator

- Focusing 2- or 3-layer aerogel
- 40 mm thick
- No gaseous radiator
 05.09.2014

Mirrors

- Flat segments
- Float glass substrate 2 mm thick
- Al+SiO₂ coating, R≥90%
- Light-weight Al or carbon fiber support
- Simplicity of production and positioning

Photon Detector

Hamamatsu H12700 MaPMT

- flat panel,
- 8x8 anode pixels of 6mm size
- 87% active area ratio
- Bialkali photocathode
- Gain: 1.5·10⁶
- Good single p.e. amp resolution
- Robust
- Long lifetime
- Works in the mag. field 25G (stray field of the dipole)

Focusing Aerogel RICH (FARICH)

Focusing aerogel improves proximity focusing design by reducing the contribution of radiator thickness into the Cherenkov angle resolution

Multi-layer monolith aerogels have been being produced by the Boreskov Institute of Catalysis in cooperation with the Budker INP since 2004.

First sample of 4-layer aerogel

3-layer aerogel 115x115x41 mm³

T.lijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70

Readout options

H12700 QE / DPC3200-22-44 PDE producers' data

DPC PDE is actually about 1.7 times lower as was shown by the beam test [A.Yu.Barnyakov et al., NIMA 732 (2013) 352] and our PDE direct measurements

Conceptual mechanical design

- Light-weight Al support
- 0.5mm windows for particles
- Total material budget about 10% X₀

Mirror layout optimization in 2D

I. 100% photon acceptance

(there are never too many Cherenkov photons)

- Lower Č photon hits PD
- Upper Č photon hits PD
- All other Č photons automatically do the same

II. Photo detector area minimization

w(z, $I_1, I_2, I_3, ...$) $\rightarrow w_{min}$ First (lower) segment has major influence on PD size!

Six segments flat mirror (as an example)

Possible mirror configurations

Mirrors: flat vs cylindrical

Feature	3 segments	Cylindrical
PD width [*] , cm	67.5	58.5
Mirror focusing	no	yes
Aerogel focusing	yes	no
Combinatorial background	yes	no
Cherenkov image shape on PD surface	broken elliptical	complicated

* Size of the PD side projection. Aerogel plate half-size is 60 cm.

Mirror bent in 3-rd dimension does not give much reduction of PD area but substantially cuts the photon acceptance

3-segment mirror was chosen as a baseline option

PANDA Forward RICH Detector

PANDA Forward RICH simulation

Radiator	focusing aerogel with n~1.05	
Photon detector	Philips DPC 3200-22	
Radiator thickness	4 cm	

Sim done by K. Beloborodov using PandaRoot

- 1. Physics (Geant4)
 - ✓ Electromagnetic processes
 - ✓ Multiple scattering
 - ✓ Hadron interactions
 - Optical processes (aerogel, mirror, PD)
- 2. Digitization
 - ✓ PD pixelization
 - ✓ PDE
 - ✓ PD dark counting
 - ✓ Dead time
 - ✓ Timing resolution
 - ✓ Crosstalks (to do)
- 3. Reconstruction
 - ✓ Hit preselection
 - ✓ Fit $\theta_c(\phi_c)$ dependence
- 4. Calibration of beta resolution for fast simulation
- 5. PID
 - ✓ Probabilities calculation

Hit reconstruction

Hit pre-selection

Ring fitting

Event reconstruction

Focusing aerogel optimization

Optimize Cherenkov angle resolution by varying δn

Focusing aerogel optimization

3-layer aerogel was chosen for the following sim

PANDA Forward RICH Detector

π-K separation

PANDA FRICH performance

Conclusion and outlook

- PANDA FRICH conceptual design is described
- Realistic full simulation of PANDA FRICH is realized in PandaRoot/Geant4
- PANDA FRICH (with DPC) PID capacity is confirmed by simulation

Plans

- H12700 & PADIWA & TRB3 tests
- Mirror samples production and measurements
- Detailed mechanical design
- Focusing aerogel production technique improvement

. . .

Thank you for your attention!

History of FARICH R&D in Novosibirsk

- 2003: Outlook for an Aerogel RICH at BaBar/SuperB
- 2004: FARICH idea and first pubs by Belle coll. and Novosibirsk
- 2004-2011: MC sim studies of FARICH at SuperB, ALICE, PANDA
- 2010: FARICH proposal for Super Charm-Tau Factory
- **2011**: First beam test of FARICH prototype at the BINP electron beam facility
- 2012: FARICH prototype with Digital Photon Counter PD was tested at CERN. First continuous gradient aerogel samples were produced
- 2014: PANDA Forward RICH R&D project started

e and γ beam test facility at BINP VEPP-4M

Single pixel approach for aerogel characterization at the beam

Hits in SiPM #14 Hits in SiPM #14 15 10 5 0 -5 -10 -15 -20 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -25 -10 -15 -10 -15 -25 -10 -15 -25 -10 -15 -25 -10 -15 -25 -10 -15 -10 -15 -25 -10 -15 -10 -15 -10 -15 -10 -15 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -20 -15 -10 -15 -20 -15 -10 -15 -20 -15 -10 -15 -20 -15 -10 -15 -20 -15 -10 -15 -20 -15 -10 -15 -20 -15 -10 -15

Many pixels are combined to improve accuracy and align the tracking system with PD

Sum of all pixels w.r.t. track position

