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Challenges for cameras of imaging atmospheric Cherenkov telescopes

Primary y creates
e.m. particle cascade

Charged shower
particles emit
Cherenkov light

Image properties:

- faint images: ~100 UV photons m= at E, = 1 TeV
- short pulses: O(ns deg™') time gradients

- statistical background: up to ~1 p.e. ns™' pixel™

= fine pixelisation for reconstruction
and hadron rejection

240 m

= fast, highly sensitive, and self-
triggering cameras



Cherenkov Telescope Array (CTA)

J12 m

@ 4-7 m

— 32 countries

cta == 200 institutes
— >1300 members
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Atacama desert, Chile



FlashCam for the medium-sized telescopes: Architecture

Mechanical structure & thermal insulation @

Readout & safety control electronics

@ Photon detector plane

Window & shutter

™~
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1758 pixels (PMTs), 7.7° FoV
0.2...3000 p.e. dynamic range
continuous digitisation with 250 MS/s
fully digital trigger formation & readout
>20 kHz dead-time free Ethernet-based DAQ

<4.5 kW power consumption
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Photon detector plane

12-pixel groups with 1.5” PMTs:

highly integrated: HV supply, preamp, slow control

)
clean interface to readout system: DC-coupled )
analogue, differential signal transmission (cat. 6 cables) g
passively cooled: <3 W per module 5

aluminium-coated light concentrators increase
collection efficiency
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linear up to ~250 p.e.
(deconv. FWHM ~8 ns)
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Modular readout system

“Mini crate” Motherboard

low-power FPGA with soft core

2 connectors for mezzanines

ol — 'li readout via Gbit Ethernet

2x 12-channel FADC Trigger & clock distribution

40 cm

23302000 %

TR RCRCRCN A . %
e | P [N P e P e e
\ 4 R T

- 250 MS/s, 12 bit semi-passive distribution of
192 FADCs Trig. <1.5 W/channel clock, sync, and trigger 1/0O
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Programmable digital trigger system

* 97 FPGAs buff d lyse th
’iW 0 ’ digital trazesusflgjhr}onagjsi/; o
>200 Gbit links Illlzfc‘&#ﬂ-ﬂ-ﬁ# #’ . transmission capacity of 12
per trigger board ””&"‘”‘"‘"‘"" ’.’.’.‘ trigger boards: 2.7 Tbit/s
TENWNNNR
%W ’ * trigger on local, short light pulses;
trigger board —» | N e 0 d.igital pr@—processing & patch
B —~ ““““% size configurable
mini crate “““‘-‘

best MC
performance

= dead-time free readout with >2 GByte/s (>20 kHz) via four 10 Gbit/s Ethernet fibres
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Tests of prototype camera mechanics on prototype MST structure

Berlin-Adlershof, July 2015
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Arrival of prototype camera mechanics at integration lab
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FlashCam prototype setup in dark room
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Back view & current status

Two types of PMTs installed in PDP:

e 358 Hamamatsu R11920-100 (8 dynodes) &
359 Hamamatsu R12992-100 (7 dynodes) tubes

* remaining slots filled with dummy heater modules

Readout system complete:
* readout electronics for up to 2304 channels installed
e cabling nearly complete (optimising for mass prod.)

Near final safety, power, and mechanics:
* power consumption of complete system as specified
e closed-circuit cooling with 5...35°C coolant works

Software development & interfacing in progress:
 DAQ over 1 km 4x10G fibres works
* remote control of all components works

* internal system analysis in progress

= continuous full operation since Aug. 2016
= >20 TByte of test data taken & analysed

-
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From functionality tests to verification testing

* products to be deployed on a CTA site have to fulfil a list of environmental, RAMS, and
performance requirements

* will focus on performance requirements:
= min. readout rate & max. allowed dead time
= time synchronisation between channels
= charge & time resolution of pulse reconstruction
= longterm (temperature) stability of signal path

Main tool: Lab calibration unit

355 nm laser QI3 LOIBE il EF
2 kHz, 1.4 pJ/pulse filter wheel

l

|OX beam expander diffuser
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Readout & time synchronisation between FADCs
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= pulses of all 7/8-dynode tubes within =1 ns before timing flat-fielding

 full-camera readout verified at >20 kHz statistical trigger rates (2.2 GByte/s)
= >5x required min. rate (>2.5x goal rate) with no dead time

e time synchronisation of all channels verified with equal HV settings
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HV setting [V]

J

= fully synchronous readout system works as specified
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HV from gain flat-fielding [V]

Automatic gain flat-fielding lbefore veritying charge & time resolution

HV correlation of Multi-p.e. spectra of
1150 ¢ 51 O channels Wlth PI\/IT data sheet 510 channels after flat- f|e|d|ng
1100 - * + ! dynodes nominal gain
F|+ + 8 dynodes
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1000 F >
950 F 2
L 0
- o
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HV from PMT data sheet [V] Amplitude [LSB]

* flat-field procedure based on prior knowledge of individual excess noise factors

« ~2% precision after few minutes (limited by max. repetition rate of laser)

= standard procedure before all test measurements
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Charge resolution verified at expected NSB rates and beyond

Charge resolutlon of 450 |nd|V|duaI Channels

200 . — 380
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e from a large data set covering the whole operational range (up to >5,000 p.e./pulse & 3 GHz NSB)

* DC background in each pixel is estimated from baseline shift (~0.25 LSB/MHz)
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Time resolution verified at expected NSB rates and beyond

Time resolution of 450 individual channels
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Longterm stability — Temperature cycling over 30 h

— Camera interior
— Coolant

45 30 hours, £15 K (2 K/h)

Temperature [°C]

0 6 12 18 24
Time [h]

30

* FlashCams are thermally insulated and cooled via liquid/air heat exchangers
= interior temperatures are strongly coupled to coolant

 perform initial gain flat-fielding and baseline adjustment, let everything drift for
30 h and monitor changes
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Baseline shift [LSB]

Longterm stability — Temperature drifts
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* baseline drift: (0.4 £ 0.1) LSB/K
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* end-to-end gain and timing drifts seem to be dominated by PDP:
e 7 dynodes: (0.2 = 0.1)%/K gain & (4 + 2) ps/K transit time
e 8 dynodes: (0.4 = 0.1)%/K gain & (6 + 2) ps/K transit time
» consistent with eff. HV change of about -0.5 V/K

18
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Channels

Longterm stability — Temperature coefficients

Baseline Gain Timing
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* baseline drift: (0.4 £ 0.1) LSB/K

* end-to-end gain and timing drifts seem to be dominated by PDP:
e 7 dynodes: (0.2 = 0.1)%/K gain & (4 + 2) ps/K transit time
e 8 dynodes: (0.4 = 0.1)%/K gain & (6 + 2) ps/K transit time
» consistent with eff. HV change of about -0.5 V/K

= all reconstruction parameters are well-behaved and exceptionally stable
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Summary & outlook

FlashCam is a stable, high-performance Cherenkov camera well-suited for CTA:

* all major performance parameters have been verified and exceed CTA requirements
* longterm stability & reliability tests are ongoing; trigger verification next

e pre-production of two cameras has started; aim for two pre-series cameras late 2017
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