Recent Developments with Microchannel-Plate PMTs

Albert Lehmann,

Merlin Böhm, Markus Pfaffinger, Fred Uhlig (Universität Erlangen-Nürnberg) for the PANDA Cherenkov Group

- Introduction and motivation
- Properties of new 2" Hamamatsu MCP-PMT
- Status of aging test results
- Trying to understand PC aging mechanism
- Outlook and summary

PANDA Detector at FAIR

Albert Lehmann

MCP-PMTs for PANDA DIRCs

MCP-PMTs are the only suitable sensors for PANDA

- Compact and available as multi-anode devices
- Single photon detection even in B-fields of >1 Tesla
- Excellent time resolution <50 ps</p>
- Low dark count rates

Barrel DIRC

- Pixel size: ~ 6 x 6 mm²
- Photon rate: ~200 kHz/cm²
- 10 years anode charge: 5 C/cm²
- Endcap DIRC
 - Pixel size: ~ 0.5 x 16 mm²
 - Photon rate: up to 1 MHz/cm²
 - 10 years anode charge: >5 C/cm²

Attempts to Reduce Aging

- Improved vacuum quality
- Cleaning of MCP surfaces by electron scrubbing techniques
- Thin (5-10 nm) Al₂O₃ films before or between MCPs [NIM A629 (2011) 111]
- Modified and more robust photo cathodes [JINST 6 C12026 (2011)]
- Deposition of ultra-thin atomic layer (MgO, Al₂O₃) on MCP substrate
 - Arradiance Inc. \rightarrow PHOTONIS, LAPPD, ...
 - MCP pores are coated in three steps
 - resistive layer
 - secondary electron emission (SEE) layer
 - electrode layer
 - Optimization of MCP resistance and SEE
 - for each film independently
 - higher gain at given HV

[NIM A639 (2011) 148]

Simultaneous Aging of MCP-PMTs

- **Problem in 2011:** The few aging tests existing were done in rather different environments \rightarrow results are difficult to compare
- <u>Goal</u>: measure aging behavior for all available lifetime-enhanced MCP-PMTs in same environment
- Simultaneous illumination with common light source \rightarrow same rate
- Aging results presented at RICH 2013:

Tendency of faster gain drop inside magnetic fields in ALD tubes
 Reason could be higher SEE coefficients → earlier saturation

Albert Lehmann

2 inch Multi-Anode MCP-PMTs

Photonis

- Layout existent since Burle Planacon
- ALD surfaces; no film
- active area ratio: 81%
- Available as 8x8 (Barrel DIRC) and 3x100 (Endcap DIRC) pixel versions

Hamamatsu

- First prototypes developed in 2014
- ALD surfaces + film in front of 1st MCP
- Slightly less active area ratio: 70%
- Available as 8x8 (Barrel DIRC) and 6x128 (Endcap DIRC) pixel versions

Readout of 128x6 Hamamatsu MCP

MCP backplane with 12 blocks of 64 pins each: rather difficult readout for characterization (not yet ASICs)

MCP backplane with one readout board:

- Covers 3 64-pin blocks
- Lower side: three 0.05" Samtec plugs with 4x20 pins (FOLC-120-02-L-Q)
- Upper side: three
 0.05" Samtec plugs
 with 2x40 pins (LSHM 140-02.5-L-DV-A-S TR)

Adapter board for 64 pins from 0.05" to 0.10" pitch

MCP backplane with four readout boards connected

80-channel coaxcable connects to 1 adapter board

Possibility to read out single blocks directly or up to all 768 channels simultaneously with coax-cables

Albert Lehmann

Properties of 2" Hamamatsu (8x8)

JS0035

still negative

- QE homogeneity improvable
- Gain very nonhomogeneous
- Rather low rate capability

positive

- Very low dark count rate
- Good cross talk behavior
- Excellent time resolution

Albert Lehmann

New 2" Hamamatsu MCP-PMT (R13266) prototype shows promising features with room for improvement

Measure Width of Charge Cloud

- Hamamatsu 6x128 pixels inside magnetic field
 - Illuminate 1 pixel with <50 µm focus</p>
 - Read out 8 adjacent pixels (0.4 mm pitch)
 - Measure counts above a certain threshold (10 chan. ~ 0.04 p.e.)
 - Plot distribution as a function of the magnetic field
 - Width of distribution shrinks with increasing B-field

0.3 mm FWHM resolution at 1 T

Albert Lehmann

Crosstalk and Position Resolution

Hamamatsu MCP-PMT with 6x128 pixels inside magnetic field

- Diameter of laser spot <50 µm</p>
- Read out 8 adjacent pixels (0.4 mm pitch)
- Plot counts in each pixel at given laser position (thresh = 0.04 p.e.; 50 µm steps)

Position resolution

- Photonis MCP-PMTs looks better \rightarrow Talk M. Düren
- Peak width gets smaller at higher B-field

Good linearity with charge weighting

Off at sides because of limited number of anodes

Measure Lorentz Shift in MCP-PMT

Maximum shift of 1.7 mm (~4 pixels) at Φ = 30°

Albert Lehmann

Measurement of MCP Lifetime

Continuous illumination

460 nm LED at 0.25 to
 1 MHz rate attenuated to single photon level
 → 3 to 20 mC/cm²/day

Permanent monitoring

 MCP pulse heights and LED light intensity

Q.E. measurements

- 250–700 nm wavelength band with monochromator $\Delta \lambda = 1$ nm
- Every 2-3 weeks (first days): wavelength scan
- Every 3-4 months (first weeks): complete surface scan at 372 nm

Albert Lehmann

Lifetime-Investigated MCP-PMTs

	BINP	PHOTONIS			Hamamatsu			
		XP85012	XP85112	XP85112	R10754X-01-M16	R10754X-07-M16M	R13266-07-M64	
pore size (µm)	7	25	10	10	10	10	10	
number of pixels	1	8x8	8x8	8x8	4x4	4x4	8x8	
active area (mm²)	9² π	53x53	53x53	53x53	22x22	22x22	51x51	
total area (mm²)	15.5² π	59x59	59x59	59x59	27.5x27.5	27.5x27.5	61x61	
geom. efficiency (%)	36	81	81	81	61	61	70	
photo cathode	Multi-alkali	bi-alkali			multi-alkali			
peak Q.E.	21% @ 495 nm	20% @ 380 nm	23% @ 380 nm	22% @ 380 nm	21% @ 375 nm	22% @ 415 nm	17% @ 415 nm	
comments	better vacuum, new cathode	better vacuum, polished surfaces	better vacuum, polished surfaces	better vacuum, ALD surfaces	film between MCPs	ALD + film	ALD + film	
# of tubes measured	2	1	1	3	1 (+1 L4)	2	1	
					The second s			

- Tubes first measured with no significant lifetime improvements
- Lifetime improved tubes measurement started ~5 years ago
- Hamamatsu 1 inch ALD tubes measurement started ~3 year ago
- Hamamatsu 2 inch ALD tube started in Dec. 2015

Albert Lehmann

Lifetime of MCP-PMTs (Aug. 2016)

- Hamamatsu film MCP-PMT: Q.E. drops beyond 1 C/cm²
- Photonis 9001393: no Q.E degrading observed up to ~10 C/cm²
- MCP-PMTs with ALD layers: very good performance to >6 C/cm²

Albert Lehmann

1 layer ALD: gain/DCR variations; QE stable up to 6 and 10 C/cm², then declining

anode charge [mC/cm²]

anode charge [mC/cm2.

Albert Lehmann **2 layer ALD: very stable behavior up to ~10 C/cm²**RICH 2016 -- Bled (Slovenia) -- September 6, 2016

anode charge [mC/cm²]

anode charge [mC/cm²]

gain moderately stable and DCR decreases slightly

Moderate but continuous QE degradation with wavelength dependence
 Albert Lehmann
 RICH 2016 -- Bled (Slovenia) -- September 6, 2016

<u> Q.E. Scans</u> (Hamamatsu ALD)

1": steady QE degradation up to 10 C/cm²; corners more serious
2": significant QE degradation starts already after ~1.3 C/cm²

Q.E. Scans (Photonis ALD)

1 ALD layer: QE degradation starts at 6 C/cm² and 10 C/cm² 2 ALD layers: no sign of QE degradation up to \sim 9.4 C/cm²

Albert

Possible Causes of MCP Aging

Neutral molecules from residual gas react with PC [NIM A629 (2011) 111]

Ion feedback

- Amplification process causes
 - Desorption of atoms from MCP material (especially H and Pb)
 - Damage to MCP surfaces
 → gain may change
 - Ionization of residual gas atoms

- Ions accelerated towards photo cathode (ion feedback)
 - Ions hit and may react with PC
 - Order-of-magnitude ~keV ions
 - Light ions (H^+ , H_nO^+) confirmed by TOF
 - Heavier ions more difficult to identify (expected K, Cs, Pb, Si)
- PC gets damaged \rightarrow QE loss
 - Mechanism unknown !

Albert Lehmann

RICH 2016 -- Bled (Slovenia) -- September 6, 2016

20

Aging Mechanism (Absorption?)

According to 3-step photo-emission model "damage" may occur on any of the processes related to absorption, diffusion and escape at the surface barrier

210 - 1690 nm

3.5

30

2.5

1.0

0.5

'n

300

600

c 20

- Accessible measurements
 - Quantum efficiency (QE)
 - p.e. energy distribution with RPA (retarding potential analyzer)
 - Optical absorption

Optical measurements

- Backside (through-substrate) spectroscopic ellipsometry measurements
- Results of 4 quadrants indistinguishable (2 covered, 2 aged)
- Bulk structure unchanged
 - \rightarrow normal e-h pair generation
 - \rightarrow no change in photon absorption
- Big changes in optical absorption could be seen by eye!

900

nm

1200

1500

Opt. Const. of Gan-Osc vs. nm

pos. C pos. A pos. B pos. D Thickness (nm) 12.9 ± 0.11 12.78 ± 0.11 14.20 ± 0.13 12.33 ± 0.14 Opt. Const. of Gen-Osc vs. nm AGED 1.5 k. pos. A ¥ 1.0 0.50.0 1\$00 1500 1800 0 300 600 900 1200 nm

9000223

9000223

0000223

9000223

Albert Lehmann

Aging Mechanism (Work Function?)

Work function measurements

Measure p.e. energy distribution curve: change in electron affinity will expand or compress the range of electron energies between threshold and hottest electrons

Change in electron affinity (EA) seen

- ΔΕΑ ~ 0.13 eV
- Very similar EDC shape → diffusive energy loss apparently unchanged

EA impact on QE results

- Upper curves: QE ratio of good PC side for K₂CsSb photo cathode with different EAs
- EA drop starts at long wavelength, but has minimal impact at lower wavelengths
- QE ratio "aged/masked" is very different → EA increase is not the main reason for aging

Aging Mechanism (Sputtering?)

Electron backscattering from MCP

- At long wavelengths the distribution of p.e. energies is very narrow → possiblity to resolve elastic scattering features at MCP surface (i.e. electrons returning to photocathode) → Cs sputtered from PC
- Notable difference between the two PC halves (aged and masked)
- Structures disappear after 18h at 80° C
- But: heating also yields constant QE loss for all λ → totally different behavior than for ion feedback QE degradation

Summary

- Bulk structure intact \rightarrow band structure unchanged \rightarrow photon absorption unchanged
- Only small EA change in EDC \rightarrow work function ~unchanged \rightarrow p.e. escape unaffected
- Cs ions at MCPs \rightarrow sputtering from PC \rightarrow cannot explain constant QE loss factor
- What is it then that causes the PC aging $? \rightarrow$ answer still unclear

Albert Lehmann

Further investigations to understand the aging process

- PHOTONIS XP85112 (9001223 and 9001332) are unique MCP-PMTs with an aged and an unaged half of the photo cathode (PC)
 - At PHOTONIS with non-destructive investigations of the PC
 - Maybe X-ray diffraction measurement of the PC
- Identify the mass of the feedback ions with afterpulsing spectra
 - Compare different types of MCP-PMTs (e.g., 10 µm, 25 µm, ALD, non-ALD)
- Accelerate aging and lifetime measurements
 - Saturation effects: aging speed depends on photon rate and intensity
 - M.Yu. Barnyakov and A.V. Mironov, 2011 JINST 6 C12026
 - Simultaneous current measurement at cathode and anode requires one potential-free picoammeter

Setup semi-automatic quality control for MCP-PMT mass delivery

Albert Lehmann

New high-granularity 2" Hamamatsu MCP-PMT

- Good properties, but some parameters need more tuning
- Long tails in position distributions not understood
- Possibility to measure Lorentz shift in B-field
- Tremendous lifetime increase of latest MCP-PMTs due to recent design improvements
 - Application of ALD technique (> x50 lifetime improvement)
 - Huge step forward !
 - <u>But:</u> aging mechanism is not explained by simple work function arguments
- Equipping the PANDA DIRCs and other high rate detectors with MCP-PMTs is feasible now

	Sensor ID	Integral charge (Aug. 15, 2016) [mC/cm ²]	QE start [%]	QE latest [%]	QE latest / QE start [%]	Comments
Photonis XP85112	9001223	9234	22.15	5.29	24%	Start: 23 Aug. 11 Stop: 22 Sep. 15
	9001332	13111	22.96	14.53	63%	Start: 12 Dec. 12 ongoing
	9001393	9361	19.05	19.49	102%	Start: 23 Jan. 14 ongoing
Hamamatsu R10754X/R13266	JT0117 (M16)	2086	19.97	9.32	47%	Start: 23 Aug. 11 Stop: 24 Jul. 12
	KT0001 (M16M)	13767	21.52	11.27	52%	Start: 20 Aug. 13 ongoing
	KT0002 (M16M)	9856	21.4	12.25	57%	Start: 21 Oct. 13 ongoing
	JS0022 (M64)	1298	17.43	14.48	83%	Start: 11 Dec. 15 ongoing
BINP	1359	3616	11.95	9.1	76%	Start: 21 Oct. 11 Stop: 06 May 13
	3548	6698	11.93	4.58	38%	Start: 21 Oct. 11 Stop: 08 Jul. 15

Albert Lehmann

ALD

– non

ALD