Recent Developments with Microchannel-Plate PMTs

Albert Lehmann,

Merlin Böhm, Markus Pfaffinger, Fred Uhlig (Universität Erlangen-Nürnberg) for the PANDA Cherenkov Group

- Introduction and motivation
- Properties of new 2'' Hamamatsu MCP-PMT
- Status of aging test results
- Trying to understand PC aging mechanism
- Outlook and summary

PANDA Detector at FAIR

MCP-PMTs for PANDA DIRCs

MCP-PMTs are the only suitable sensors for PANDA

- **Compact and available as multi-anode devices**
- Single photon detection even in B-fields of >1 Tesla
- **Excellent time resolution <50 ps**
- Low dark count rates

Barrel DIRC

- Pixel size: \sim 6 x 6 mm²
- Photon rate: \sim 200 kHz/cm²
- **10 years anode charge: 5 C/cm²**
- Endcap DIRC
	- **Pixel size: ~ 0.5 x 16 mm²**
	- Photon rate: up to 1 MHz/cm²
	- **10 years anode charge: >5 C/cm²**

Attempts to Reduce Aging

- Improved vacuum quality
- Cleaning of MCP surfaces by electron scrubbing techniques
- Thin (5-10 nm) $\mathsf{Al}_2\mathsf{O}_3$ films before or between MCPs [NIM A629 (2011) 111]
- Modified and more robust photo cathodes [JINST 6 C12026 (2011)]
- Deposition of ultra-thin atomic layer (MgO, Al_2O_3) on MCP substrate
	- Arradiance Inc. \rightarrow PHOTONIS, LAPPD, ...
	- MCP pores are coated in three steps
		- resistive layer
		- secondary electron emission (SEE) layer
		- electrode layer
	- Optimization of MCP resistance and SEE
		- for each film independently
		- higher gain at given HV

[NIM A639 (2011) 148]

Simultaneous Aging of MCP-PMTs

- **Problem in 2011:** The few aging tests existing were done in rather different environments \rightarrow results are difficult to compare
- **Goal:** measure aging behavior for all available lifetime-enhanced MCP-PMTs in same environment
- **Simultaneous illumination** with common light source → same rate
- Aging results presented at RICH 2013:

Tendency of faster gain drop inside magnetic fields in ALD tubes Reason could be higher SEE coefficients \rightarrow earlier saturation

2 inch Multi-Anode MCP-PMTs

Photonis

- **Layout existent since Burle Planacon**
- ALD surfaces; no film
- active area ratio: 81%
- Available as 8x8 (Barrel DIRC) and 3x100 (Endcap DIRC) pixel versions

Hamamatsu

- **First prototypes developed in 2014**
- ALD surfaces $+$ film in front of 1st MCP
- Slightly less active area ratio: 70%
- Available as 8x8 (Barrel DIRC) and 6x128 (Endcap DIRC) pixel versions

Readout of 128x6 Hamamatsu MCP

MCP backplane with 12 blocks of 64 pins each: rather difficult readout for characterization (not yet ASICs)

MCP backplane with one readout board:

- Covers 3 64-pin blocks
- Lower side: three 0.05'' Samtec plugs with 4x20 pins (FOLC-120-02-L-Q)
- Upper side: three 0.05'' Samtec plugs with 2x40 pins (LSHM-140-02.5-L-DV-A-S-TR)

Adapter board for 64 pins from 0.05'' to 0.10'' pitch

MCP backplane with four readout boards connected

80-channel coaxcable connects to 1 adapter board

Possibility to read out single blocks directly or up to all 768 channels simultaneously with coax-cables

Properties of 2'' Hamamatsu (8x8)

JS0035

still negative

- QE homogeneity improvable
- Gain very nonhomogeneous
- Rather low rate capability

positive

- Very low dark count rate
- Good cross talk behavior
- Excellent time resolution

New 2'' Hamamatsu MCP-PMT (R13266) prototype shows promising features with room for improvement

Measure Width of Charge Cloud

- Illuminate 1 pixel with <50 μm focus
- Read out 8 adjacent pixels (0.4 mm pitch)
- Measure counts above a certain threshold (10 chan. \sim 0.04 p.e.)
- Plot distribution as a function of the magnetic field
- Width of distribution shrinks with increasing B-field

0.3 mm FWHM resolution at 1 T

EX Crosstalk and Position Resolution

Hamamatsu MCP-PMT with 6x128 pixels inside magnetic field

- Diameter of laser spot <50 μm
- Read out 8 adjacent pixels (0.4 mm pitch)
- Plot counts in each pixel at given laser position $(thresh = 0.04 p.e.; 50 µm steps)$

Position resolution

- Rather long tails → **electronic crosstalk?**
- Photonis MCP-PMTs looks better \rightarrow Talk M. Düren
- Peak width gets smaller at higher B-field

Good linearity with charge weighting

Off at sides because of limited number of anodes

Measure Lorentz Shift in MCP-PMT

ION

inside magnetic field

- Diameter of laser spot <50 μm
- Always point laser to same pixel (at $\Phi = 0^{\circ}$)
- Read out 8 adjacent pixels (0.4 mm pitch)
- Calculate charge weighted position along tilt axis
- **→ measures Lorentz shift inside B-field**
- Position shift
	- Saturation reached at ~0.25 Tesla
	- Maximum shift of 1.7 mm (~4 pixels) at $\Phi = 30^\circ$

Measurement of MCP Lifetime

Continuous illumination

– 460 nm LED at 0.25 to 1 MHz rate attenuated to single photon level \rightarrow 3 to 20 mC/cm²/day

• Permanent monitoring

– MCP pulse heights and LED light intensity

Q.E. measurements

- 250–700 nm wavelength band with monochromator Δλ = 1 nm
- Every 2-3 weeks (first days): wavelength scan
- Every 3-4 months (first weeks): complete surface scan at 372 nm

Lifetime-Investigated MCP-PMTs

- Tubes first measured with no significant lifetime improvements
- **Lifetime improved tubes measurement started ~5 years ago**
- Hamamatsu 1 inch ALD tubes measurement started ~3 year ago
- Hamamatsu 2 inch ALD tube started in Dec. 2015

Lifetime of MCP-PMTs (Aug. 2016)

- Hamamatsu film MCP-PMT: Q.E. drops beyond 1 C/cm²
- Photonis 9001393: no Q.E degrading observed up to \sim 10 C/cm²
- MCP-PMTs with ALD layers: **very good performance to >6 C/cm2**

1 layer ALD: gain/DCR variations; QE stable up to 6 and 10 C/cm², then declining

Albert Lehmann **RICH 2016 -- Bled (Slovenia) -- September 6, 2016 16** 2 layer ALD: very stable behavior up to \sim 10 C/cm²

gain moderately stable and DCR decreases slightly

Albert Lehmann RICH 2016 -- Bled (Slovenia) -- September 6, 2016 **17** Moderate but continuous QE degradation with wavelength dependence

Q.E. Scans (Hamamatsu ALD)

 $A \rightarrow 0$ 1": steady QE degradation up to 10 C/cm²; corners more serious 2": significant QE degradation starts already after \sim 1.3 C/cm²

Q.E. Scans (Photonis ALD)

Albert 2 ALD layers: no sign of QE degradation up to ~9.4 C/cm² a⁹ 1 ALD layer: QE degradation starts at 6 C/cm² and 10 C/cm²

Possible Causes of MCP Aging

Neutral molecules from residual gas react with PC [NIM A629 (2011) 111]

Ion feedback

- Amplification process causes
	- Desorption of atoms from MCP material (especially H and Pb)
	- Damage to MCP surfaces \rightarrow gain may change
	- Ionization of residual gas atoms

- Ions accelerated towards photo cathode (**ion feedback**)
	- Ions hit and may react with PC
	- Order-of-magnitude \nightharpoonup keV ions
	- Light ions (H^+, H_nO^+) confirmed by TOF
	- Heavier ions more difficult to identify (expected K, Cs, Pb, Si)
- PC gets damaged \rightarrow QE loss
	- **Mechanism unknown**

Albert Lehmann RICH 2016 -- Bled (Slovenia) -- September 6, 2016 **20**

[Jeff deFazio, 2016]

Aging Mechanism (Absorption?)

According to 3-step photo-emission model "damage" may occur on any of the processes related to absorption, diffusion and escape at the surface barrier

 $210 - 1690$ nm

3.5 $3₀$

2.5

 10

0.5

'n

300

600

 0.20 1.5

- Accessible measurements
	- Quantum efficiency (QE)
	- p.e. energy distribution with RPA (retarding potential analyzer)
	- Optical absorption

Optical measurements

- Backside (through-substrate) spectroscopic ellipsometry measurements
- Results of 4 quadrants indistinguishable (2 covered, 2 aged)
- **Bulk structure unchanged and the structure unchanged** $\left\{\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right\}$
	-
	- \rightarrow no change in photon absorption
- Big changes in optical absorption could be seen by eye!

900

nn

1500

1200

Opt. Const. of Gan-Osc vs. nm

9001223 - TRANS, REFL, ABSORBED 0.8 \rightarrow normal e-h pair generation
 \rightarrow no change in photon absorption 0.4 $0.2 -$

Albert Lehmann **RICH 2016** -- Bled (Slovenia) -- September $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{200}$

Aging Mechanism (Work Function?)

Work function measurements

Measure p.e. energy distribution curve: change in electron affinity will expand or compress the range of electron energies between threshold and hottest electrons

Change in electron affinity (EA) seen

- \triangle \triangle EA ~ 0.13 eV
- \blacktriangleright Very similar EDC shape \rightarrow diffusive energy loss apparently unchanged

EA impact on QE results

- Upper curves: QE ratio of good PC side for $K₂CsSb$ photo cathode with different EAs
- EA drop starts at long wavelength, but has minimal impact at lower wavelengths
- QE ratio "aged/masked" is very different \rightarrow EA increase is not the main reason for aging

Aging Mechanism (Sputtering?)

Electron backscattering from MCP

- At long wavelengths the distribution of p.e. energies is very narrow \rightarrow possiblity to resolve elastic scattering features at MCP surface (i.e. electrons returning to $photocathode) \rightarrow Cs$ sputtered from PC
- Notable difference between the two PC halves (aged and masked)
- Structures disappear after 18h at 80 $^{\circ}$ C
- But: heating also yields constant QE loss for all $\lambda \rightarrow$ totally different behavior than for ion feedback QE degradation

Summary

- Bulk structure intact \rightarrow band structure unchanged \rightarrow photon absorption unchanged
- Only small EA change in EDC \rightarrow work function ~unchanged \rightarrow p.e. escape unaffected
- Cs ions at MCPs \rightarrow sputtering from PC \rightarrow cannot explain constant QE loss factor
- What is it then that causes the PC aging ? → answer still unclear

Further investigations to understand the aging process

- PHOTONIS XP85112 (9001223 and 9001332) are unique MCP-PMTs with an aged and an unaged half of the photo cathode (PC)
	- At PHOTONIS with non-destructive investigations of the PC
	- Maybe X-ray diffraction measurement of the PC
- I Identify the mass of the feedback ions with afterpulsing spectra
	- Compare different types of MCP-PMTs (e.g., 10 μm, 25 μm, ALD, non-ALD)
- Accelerate aging and lifetime measurements
	- Saturation effects: aging speed depends on photon rate and intensity
		- M.Yu. Barnyakov and A.V. Mironov, 2011 JINST 6 C12026
	- Simultaneous current measurement at cathode and anode requires one potential-free picoammeter

Setup semi-automatic quality control for MCP-PMT mass delivery

New high-granularity 2'' Hamamatsu MCP-PMT

- Good properties, but some parameters need more tuning
- **Long tails in position distributions not understood**
- **Possibility to measure Lorentz shift in B-field**
- **Tremendous lifetime increase of latest MCP-PMTs** due to recent design improvements
	- **Application of ALD technique (> x50 lifetime improvement)**
	- **Huge step forward !**
	- **But: aging mechanism is not explained by simple work function arguments**
- **Equipping the PANDA DIRCs and other high rate detectors** with MCP-PMTs is feasible now

L \Box

 \subset o \subset

 $\overline{}$ \Box