Highlights from the ANTARES neutrino telescope

Simone Biagi on behalf of the ANTARES collaboration

INFN, Laboratori Nazionali del Sud

RICH 2016 – Bled 8 Sept 2016

ANTARES: the largest Northern neutrino telescope

Scientific goals

- Neutrino astrophysics
- Multi-messenger studies
- Dark matter searches
- Atmospheric neutrinos
- Exotic particles search: nuclearites, monopoles
- Acoustic neutrino detection
- Earth and Sea sciences

The telescope: full configuration since 2008

How does a neutrino telescope work?

ν_μ γ

muon neutrino, CC only (track reconstruction)

all neutrino flavours, CC & NC (shower reconstruction)

ANTARES performances

ANTARES angular resolution vs E_\

Tracks ({ "cc) ideal tool for astronomy

Median <0.4° above 10 TeV

90% purity

Upgoing cascade events ({ cc, Nc)

Angular resolution ≈ 3°

Shower confined within $\approx 10 \text{ m} \rightarrow \text{Contained events}$

Good estimate of the \ energy, better than 10%

ANTARES searches for neutrino flux

- 1. Searches for a diffuse flux
- 2. Searches for point-like sources
- 3. Searches for diffuse flux with reduced search window
- 4. Transient/multimessenger studies

1. ANTARES diffuse flux (tracks)

- Search for excess of **reconstructed** HE events over the atmospheric background background bata: 2007-2015 **(2451 livedays)**Optimization based on IC best fit flux Search for excess of reconstructed HE
- Optimization based on IC best fit flux (spectral index $\Gamma = 2$ and 2.5)
- Variables checked with burn sample ('0' ending runs)

Above E_{cut}:

- Background: 13.5 ± 3
- IC-like signal: 3 events
- Observed: 19 events

1. ANTARES diffuse flux (cascades)

- Search for excess of reconstructed HE events over the expected atmospheric background
- Data: 2007-2013 (1405 livedays)
- Optimization based on IC best fit flux (spectral index Γ = 2 and 2.5)
- Variables checked with burn sample ('0' ending runs)

Above E_{cut}:

- Background: 5± 2
- IC-like signal: 1.5 evts
- Observed: 7 evts

ANTARES combined **upper limits** and sensitivity (2007-2015) tracks + showers

2. Point sources

- 2007-2013: 1690 days (+2014-2015 next weeks)
- 6490 tracks172 cascades
- Unbinned all-sky search
- 54 candidate sources +
 8 HESE μ
- Best limit for E<100 TeV

2. Joined ANTARES-IceCube PS searches

- Combined 90% CL sensitivities (green line) and limits (points) for E⁻² spectrum.
- Blue (Red) curves/points indicate
 ANTARES (IceCube) sensitivities/limits

Astrophys.J. 823 (2016) no.1, 65

2.What about the IC signal? Hidden PS producing n_p HESE?

- A Point Source with $\Phi_0 \mathbf{E}^{-\gamma}$ can produce some of the HESE?
- The ANTARES 90% C.L. upper limit excludes that a single point-like source produces n_p >6 HESE, assuming γ =2.0.
- A single point-like source yielding $n_p > 3$ is excluded for $\gamma = 2.3$

3. "Enhanced" diffuse flux?

3. The Galactic ridge

v's and γ-rays produced by CR propagation

$$p_{CR} + p_{ISM} \rightarrow \pi^0 \pi^{\pm} \dots$$

 $\pi^0 \rightarrow \gamma \gamma (EM \ cascade)$
 $\pi^{\pm} \rightarrow \nu_{\mu}, \nu_e \dots$

- Search region |||<30°, |b|<4°
- Cuts optimized for Γ =2.4-2.5
- Counts in the signal/off zones
- No excess in the HE neutrinos
- 90% c.l. upper limits: 3<Ε_ν<300 TeV
- Phys Lett B760 (2016) 143

3. v from Fermi Bubbles

- v can check the hadronic origin of the emission from the bubbles
- E⁻², E^{-2.18} spectra [Lunardini et al. PRD92 (2015)] and different cutoff: 50, 100, 500, ∞ TeV
- comparison on-zones/off-zones (3) of $\Delta\Omega$ =0.66 sr
- 2008-2015 analyzed (806+366+593 (new) days).
- 28 events observed /19.7 average bck expected
- Excess of 1.5σ (lower than in the previous analysis)

ANTARES EPJ C (2014) 74:2701

4. Multimessenger program

Multi wavelength follow-up of neutrinos

	Radio	Visible	X-ray	GeV-ray	TeV-ray	GW	{
	MWA	TAROT	Swift	Fermi-LAT	HESS	Ligo	IC
		ZADKO			HAWC	Virgo	
		MASTER					
Alerts	12/yr	30/yr	6/yr	(Offline)	(1-10/yr)	(Offline)

Neutrino follow-up of GW150914

- Limits from ANTARES dominates below O(100 TeV) (white line)
- Size of GW150914: 590 deg² ANTARES resolution: <0.5 deg²
- GW resolution much improved with LSC+Virgo; better localization for further follow-up
- Limits on total energy radiated in neutrinos: <10% GW
- Future: Receive / send alerts in real time $E_{\nu, {
 m tot}}^{
 m ul} \sim 10^{52} 10^{54} \left(\frac{D_{
 m gw}}{410 \, {
 m Mpc}} \right)^2 {
 m erg}$

v_{μ} associated with GeV and TeV γ -ray flaring blazars and X-ray binaries

- Search for v's (2008-2012) correlated with high activity state
- Blazars monitored by FERMI-LAT and IACTs (JCAP 1512 (2015), 014)
- **33 X-ray binaries** during flares observed by Swift-BAT, RXTE-ASM and MAXI. Transition states from telegram alerts (paper in prep.)
- No significant excess (best post-trial 72% for GX 1+4).
- Upper limits on v fluence and model parameters constrain

Dark Matter searches

Searches for a possible ν_μ excess due to DM annihilation from the Galactic center, the Sun core, the Earth nucleus

Dark Matter from the Sun and the Galactic Centre

$$X_{\text{WIMP}} \overline{X}_{\text{WIMP}} \rightarrow n\overline{n}, \ b\overline{b}, \ W^{\scriptscriptstyle -}W^{\scriptscriptstyle +}, \ t^{\scriptscriptstyle -}t^{\scriptscriptstyle +}, \ m^{\scriptscriptstyle -}m^{\scriptscriptstyle +}$$

- Gravitational trapping and accumulation of DM particles in the centre of astrophysical objects like the Sun and the Galactic centre
- DM annihilation would be produce a HE neutrino flux → very clean signature
 no significant astrophysical backgrounds expected
- v_u spectrum → WIMPSIM [Blennow,Edsjö,Ohlsson,arXiv:0709.3898]
- Bkg estimated from time scrambled data.

No excess observed

DM from the Sun

Phys Lett B759 (2016) 69

Limits on neutrino flux transformed in scattering cross section limit

Neutrino telescopes → most restrictive limits for spin-dependent cross section

DM from the Galactic Center

- Northern hemisphere: very good visibility of the GC (Ice Cube: veto used)
- J-factor s calculated with CLUMPY (A.Chardonnier et al., Comp.Phys.Comm. 183, 656, 2012)

Particle physics

DM distribution $X = \int_{0}^{2\pi} d\Omega \int_{10.5}^{\infty} \rho^{2}(r(s, \psi, \theta)) ds$.

Summary

- Search for a neutrino flux from the Southern sky competitive sensitivities and excellent angular resolution in both track and cascade events:
 - Upper limits on known GeV-TeV γ -ray sources <10⁻⁸ GeV/(cm² s)
 - − A point-like source yielding >3 HESE is excluded for $\gamma \ge 2.3$
 - Sensitivity for a diffuse flux close to the level of the IC signal
- Significant contribution to understand the origin of cosmic neutrinos observed by IceCube
- Detailed study of extended regions (Galactic plane, Fermi Bubbles)
 - no v_{μ} excess from the Galactic ridge/IC hot spot;
- A large multimessenger effort
 - EM radiation: radio (MWA), optical, X-ray, γ -rays (LAT,IACTs)
 - Gravitational Wave observatories and IceCube
- Important contribution to the indirect searches for Dark Matter

The future: KM3NeT

- The simple extrapolation of the Fermi-LAT γ-ray measurement to the IC v flux in the Galactic Plane area excluded
- For a neutrino flux $\propto E^{-2.5} \ge 3$ HESE originating in this region excluded at 90% c.l.

ΔΩ E_v²Φ³¹ [GeV cm²² s⁻¹

 More information soon (tracks up to 2015+cascades) and maxlikelihood analysis

v's yield (positions and E): KRAy model

RICH 2016 - Bled