

Performance of the LHCb RICH detectors during the LHC Run II

Antonis Papanestis

STFC – RAL

On behalf of the

LHCb RICH Collaboration

Outline

- Brief description of the detectors
- Changes between Run I and Run II
 - > LHCb changes
 - > RICH changes
- Performance in Run II
 - Cherenkov angle resolutions
 - > PID performance
 - Comparison with Run I

LHCb experiment

LHCb RICH Detectors

RICH-1 (25-300 mrad)

 $4 \text{ m}^3 \text{ C}_4 \text{F}_{10} \quad n = 1.0014$, up to 60 GeV

288 HPDs and magnetic shielding

RICH-2 (15-120 mrad)

 $100 \text{ m}^3 \text{ CF}_4 \quad n = 1.0005, \text{ up to } \sim 100 \text{ GeV}$

RICH Hitmap

5

Single track event

New LHCb Trigger

Run I 40 MHz bunch crossing rate LO Hardware Trigger: 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz h± **44/4** e/y Defer 20% to disk Software High Level Trigger 29000 Logical CPU cores Offline reconstruction tuned to trigger time constraints Mixture of exclusive and inclusive selection algorithms 5 kHz Rate to storage

Run II

Consequences of the new trigger strategy

- RICH information in HLT2
 - Limited time for RICH decision
 - Needed to speed up the procedure
 - Aerogel rings very big
 - Many photons, many track/photon combinations
 - Need for 100% compatibility between online/offline on track by track basis, not average, likelihood values
- Aerogel geometry not well matched to new trigger requirements
- Aerogel performance impaired by running conditions:
 - > Many tracks, high background
- Need to optimise performance/time
- Space behind the aerogel container for a longer gas radiator

Real-time calibration and alignment of the LHCb RICH detectors
Jibo He, Tuesday 16:35

Example rings in RICH1 from Run I

Changes in the RICH detectors

- Challenge: make an excellent RICH detector even better
- Removal of aerogel
- Better tuning of photon detectors, giving 2-3% better photon yield
- New vacuum treatment for HPDs
 - Better vacuum quality
 - No aging (so far)
- Liquefying stage in C₄F₁₀ recirculation
 - Allows to remove air periodically
 - Used mainly during LHC Technical Stops
- Better control of CO₂ in RICH2
 - For reduced CF₄ scintillation

RICH1 C₄F₁₀ purity

Cherenkov Angle Resolutions

Example resolution curve

Stability over time (2015)

Calibration sample

- Collect pure samples of known-ID particles
- There is a main trigger line for each particle and possibly another one for cross-checks and systematic studies

Species	Low $p - p_T$	High p and p_{T}
e^{\pm}	_	$J\!/\psi ightarrow e^+e^-$
μ^{\pm}	$D_s^+\! o\mu^+\mu^-\pi^+$	$J/\psi o \mu^+\mu^-$
π^\pm	$K_{ m S}^0\! o\pi^+\pi^-$	$D^* ightarrow D^0 (K^- \pi^+) \pi^+$
\mathcal{K}^\pm	$ ilde{\mathit{D_s^+}} ightarrow \mathit{K^+K^-\pi^+}$	$D^* o D^0 (K^- \pi^+) \pi^+$
$ ho^\pm$	$\Lambda^{0} ightarrow p\pi^{-}$	$\Lambda^0 ightarrow p\pi^-$, $\Lambda_c^+ ightarrow pK^-\pi^+$

Mass distributions of PID samples

RICH PID performance

Comparison between:

PID variations in 2015

- Every line represents PID performance in a different period in 2015
 - Periods follow big changes in datataking
- There is a clear structure that coincides with changes in the trigger
- Detector studies show no change in detector performance
- Different mixture of events results in different PID performance

Equalising conditions for Run I/II

- Main factors affecting PID:
 - Momentum
 - Pt or η
 - Number of tracks
- Differences Run I→II
 - Higher beam energy
 - Smaller number of primary interactions
 - Different thresholds for trigger
- A re-weighting method is used to equalise the track distribution
- PID is studied in terms of momentum and η
- RICH2 covers η>2.6

Example PID comparison 2012/2015

π /K PID 2012/2015

Momentum →

p/π PID 2012/2015

Momentum →

p/K PID 2012/2015

Summary

- The LHCb RICH detectors have been operational for 6 years, providing excellent hadron PID. The RICH is an essential part of the LHCb experiment.
 - The entire charm physics programme relies on RICH PID
- The LHC long shutdown gave us the opportunity to study their performance and find a new optimum within the new LHCb trigger strategy, and implement changes that improve PID
- The experience gained in the process gives us great confidence that the design choices for the LHCb RICH Upgrade will bring the expected improvements in performance

