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SSPD talks at previous RICH conferences

Excellent reviews on SSPDs were presented at previous RICH conferences.
Description of the principles and physics of operation you can find there...
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In my presentation | will concentrate on the most recent developments and perspectives
in SSPDs (especially in SiPMs).
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Introduction

At RICH-2013 workshop: excellent review on SiPMs by G. Collazuol: improved
understanding of SiPM physics was demonstrated.
As a result (2016)-> significant progress in SiPM development

General trend : reduce correlated noise (X-talk, afterpulsing), improve PDE,
reduce dark noise

Here | will review current (September 2016) status of SSPM development.
Possible perspectives of SSPM development will be also discussed.

| will use some of results presented at NDIP-14, PD-15, VCI-16, Elba-15, 2nd
SiPM Advanced workshop-Geneva-2014
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Silicon photomultipliers (SiPMs)

Structure and principles of operation (briefly)
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(EDIT-2011, CERN)

e SiPM is an array of small cells (SPADs) connected in parallel on a common substrate
e  Fach cell has its own quenching resistor (from 100kQ to several MQ)

e Common bias is applied to all cells (~10-20% over breakdown voltage)

e Cells fire independently

e The output signal is a sum of signals produced by individual cells

For small light pulses (Ny<<Npixe,s) SiPM works as an analog photon detector

The very first metall-resitor-smiconductor APD (MRS APD) proposed in 1989 by A. Gasanov, V. Golovin,
Z. Sadygov, N. Yusipov (Russian patent #1702831, from 10/11/1989 ). APDs up to 5x5 mm2 were
produced by MELZ factory (Moscow).
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SiPMs: Optical cross-talk between cells
(direct cross-talk)

| Emission from SiPM ]
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Hot-carrier luminescence: Avalanche luminescence

10> carriers produces ~3 photons with an
wavelength less than 1 um.

Increases with the gain !

Optical cross-talk causes adjacent pixels to be
fired = increases gain

fluctuations = increases noise and excess
noise factor !
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SiPMs: Optical cross-talk - 1

Other effects of cell
luminescence:

External cross-talk
Delayed pulses from
light absorbed in
non-depleted region
(look like after-
pulses)

external 7%,

r
cross-talk, ’ »

Fabio ACERBI - PhotoDet 2015
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SiPMs: After-pulses

Carriers trapped during the avalanche discharging and then released trigger a
new avalanche during a period of several 100 ns after the breakdown
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SiPMs: Geometric factor

MPPCs
40 ‘
m 15 mkm
35 pag A20 mkm ||
r— N *25 mkm | |
‘nl-s_.?. 30 " 450 mkm
E 25 r X
c 20 o XX e
Te) xX m®
[ ]
. T § - 15 * x AAAm
S 20 um cells r| - n xx AA:. [ |
4 r' - Vr‘l\ 'rI'\' 3 g 10 * A‘I.
- S TS T} B -
x g 'H..‘\' - -, n_ X AN
.l,'l 5 ‘A
‘\ R ,a-'"‘\, .-'I-\. ,r' Wi | . ) & J & ) & D § :j-: )% 0
‘wliw bliu bl bl wl| SEESE OSSN 68 70 72 74 76 78 80
Bias [V]

“Dead” space between SiPM cells reduces its PDE. It is especially important for
the small cell pitch SiPMs
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X-talk reduction
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Afterpulsing and delayed X-talk reduction

Low After Pulses

Example of After pulse suppression 4
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SiIPMs: PDE increase
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(SensL MicroFJ-SMA-3035-E46, CERN APD Lab)

Small X-talk and after-pulsing allow SiPM operation at high over-voltages. As a result
maximum PDE increased from 20 + 30% to 50 + 60 % (SiPMs with 43+50 um cell pitch).
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PDE (%)
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Dark noise reduction
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Dark noise at low temperature

A low-electric field NUV-HD version has been developed by FBK to reduce
the tunnelling component of the DCR.
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A 10x10 cm? SiPM array would have a total DCR < 100 Hz!
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Further GF increase: Metal Film Quenching Resistor

Quenching resistors occupy some of the cell’s sensitive area. They are non-transparent for
UV/blue/green light. The loss of sensitivity can be significant (especially for small cells).
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(HPK: Koei Yamamoto, 2" SiPM
Advanced Workshop, March 2014)

Good Uniformity of resistance
( full 6-inch wafer )

Width | Poly-Si | Metal
2um | 19% 9%
1pm | 37% 1%

Another advantages of MFQ resistors are better uniformity and
Low Temperature coefficient i Lo .
of resistance relatively small temperature coefficient = smaller cell recovery time

Poly-Si | Metal change with temperature
-2.37 kQ -0.43 kQ
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SiPMs with Metal Quenching Resistor: PDE increase

MPPCs developed by HPK for the CMS HCAL Upgrade project
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PDE(515 nm)>30% for 15 um cell pitch MQR MPPCs. It was improved by a factor of >3 in
comparison to the 15 um cell pitch MPPCs with polysilicon quenching resistors.
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The future of SiPMs: UHD SiPMs

During last 3 years very high geometric factors (up to 80%) were achieved with small
cell pitch SiPMs or (Ultra High Density SiPMs). Small cells have many advantages: low
gain = smaller X-talk, after-pulsing, recovery time; larger dynamic range, possibility to
operate SiPMs at high over-voltages, better resistance to radiation: smaller dark
currents of irradiated SiPMs, smaller power dissipation, reduced blocking effects. Small
cells potentially should provide better timing resolution (smaller avalanche
development time)

Previous development: linear array of MAPDs (18x1 mm?, 15 000 cells/mm?) produced by Zecotek for the CMS HCAL Upgrade project.

MAPD-3N plastic package
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FBK UHDZ2 SIPMs
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Timing jitter, FWHM (ps)

Timing jitter, FWHM (ps)
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signal electron resolution and correlated noise
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especially important for multi-photon events.
The result which is shown here is among the
best measured so far.
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Vacuum ultra violet (VUV) SiPMs

SiPMs sensitive to VUV light (<150 nm) were recently developed by HPK for detection
LAr (T=-186 °C) scintillation light (A = 128 nm).
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SiPM: radiation hardness

Radiation may cause:

e Fatal SiPMs damage
(SiPMs can’t be used after
certain absorbed dose)

e Dark current and dark
count increase (silicon ...)

e Change of the gain and
PDE vs. voltage dependence
(SiPMs blocking effects due
to high induced dark carriers
generation-recombination
rate)

e Breakdown voltage change

Relative response to LED pulse vs. exposure to
neutrons (E,,~1 MeV) for different SiPMs

LED vs. Flux (R, =3 kOhm, no bias correction, non-annealed)
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SiPMs with high cell density and fast recovery time can operate up to 3*102 neutrons/cm? (gain

change is< 25%).
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Dark current vs. exposure to neutrons (E,,~1 MeV)
for different SiPMs

New Hamamatsu MPPCs (bias non-corrected, R =3 kOhm)
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High energy neutrons/protons produce silicon
defects which cause an increase in dark count
and leakage current in SiPMs:

|~ *DFVEM*K,

o, — dark current damage constant [A/cm];
® — particle flux [1/cm?];

V —silicon active volume [cm?]

M — SiPM gain

k — NIEL coefficient

O ~4*1017 A*cm after 80 min annealing at
T=60 C (measured at T=20 C)

Thickness of the epi-layer for most of SiPMs is in the

range of 1-3 um, howeverd 4 ~ 5+ 50 um for
different SiPMs. High electric field effects (such as
tunneling and field enhanced generation) play
significant role in the origin of SiPM’s dark noise.
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V~S*Ge*d ¢

S- area

G; - geometric factor
d.s - effective thickness
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It was observed a rather weak dependence of the
SiPM’s dark current decrease with temperature on
the dVB value. SiPM dark currents at low voltage
(5V) behave similar with temperature to that of the
PIN diode. However we observed significant
difference of this dependence for differenet SiPM
types when they operate over breakdown! General
trend is that SiPMs with high VB value have faster
dark current reduction with the temperature.
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SiPM irradiated up to 2.2*10'* n /cm?

Can SiPM survive very high neutron fluences expected at high luminosity LHC? FBK SiPM (1 mm?2, 12 um
cell pitch was irradiated with 62 MeV protons up to 2.2*10'* n /cm? (1 MeV equivalent).
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(A.Heering et al., NIM A824 (2016) 111)
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We found:

Increase of VB: ~0.5 V

Drop of the amplitude (~2 times)
Reduction of PDE (from 10% to 7.5 %)
Increase of the current (up to ~1mA at
dvB=1.5V

ENC(50 ns gate, dVB=1.5V)~80 e, rms
The main result is that SiPM survived this
dose of irradiation and can be used as
photon detector!
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Radiation hardness study of the Philips Digital Photon
Counter with proton beam
Irradiation by protons with P=800MeV/c (T=295MeV).

. 2
Beamsize: o =g =1 cm. 2
- v Signal from each pixel is is digitized T qat
and the information is processed on %
chip: &
DPC3200-22-44 « time of first fired pixel is measured z 10 ’_
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= active confrol is used to recharge 10
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* 4 x 2047 micro cells
» 50% fill factor including electronics nd
« integrated TDC with 8ps resolution 3 ;
| | st Initial DCR
) Array of 4x4 die. Active cell quenching. f
Dl:?r E (J:_EEEZ}ED_DEEEIIS (Gfgﬁr-mode APDs) + FuI_I digital data nutp_ut. e 0 0 et
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With the dose accumulation the number of noisy cells increases rather than DCR
of each cell. = Cell damage caused by single interaction of p* with Si lattice. Optimal efficiency of single photons

detection as a function of proton fluence.
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S1C SSPM
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Potentially can be more radiation hard than silicon
(S.Dolinsky, GE, NDIP-2014)
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GaAs SSPM
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Position-Sensitive SIPMs: PS-SiPM RMD

RMD had designed a 5x5 mm? position-sensitive solid-state photomultiplier (PS-SSPM) using a CMOS process that

provides imaging capability on the micro-pixel level. The PS-SSPM has 11,664 micro-pixels total, with each having a
micro-pixel pitch of 44.3 micron.

g z PS-SSPM parameters
A =3 A e e B Nl._lrnber_ of micro-pixels 11,664 (108 = 108)
M - 1 30 =30 2
Pe T 0L - M o
Bias ] Geometrical fill factor 46%
L A P— Quench resistors 143.8 kQ2
GIobal—{}J— J ) Network resistors 246.5 0
% s :- - Detection efficiency @ 400 nm ~10%
3 Dark current (pA/mm?) 10
WA— Dark count rate (kHz/pixel) ~117
> - Operating bias ~32V
? Operating gain ~10°
1 I 1 \ Excess noise factor ~1
Capacitance ({F/pixel) 150
D«ﬂﬁ l l E]—i-b- %
A basic schematics showing the design layout LT '
and pattern for PS-SSPM resistive network. wl
Each square represents a micro-pixel. The Anger logic:

network resistors are 246.5 Ohm each.
(A+B)—(C+D)

Resolution {FWHM, um)
g

X= pX
(A+D)—(B+0) ——
Y= — =

s

10° 10° 10* 10° 10°

Intensity {phetensipulse)

A plot of the X-Y spatial resolution
(FWHM) as a function of the incident
beam spot light intensity. Spot size
was ~30 micron.

An image of a 66 LYSO array having 0.5

mm pixels uniformly irradiated with 2?Na. ) ) )
M. McClish et al / Nuclear Instruments and Methods in Physics Research A 652 (2011) 264-267
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PS SIPM - NDL

The device takes advantages of the sheet N+ layer as the intrinsic continuous cap resistor for charge
division, the same way adopted in PIN or APD PSD

High Field  Anti-reflection Depletion
Anod : .
. Region Coating Region Auode Anode A
gé «~— L — Ry

i ; | Gap ! | P- Epitaxial | i |—-

v [ Buk | ! Buk : Vo ' R
; i . \ i Layer | v . 5
'-\ S Resistor b L Resistor - A \_‘ ".'

Anode B
Cathode Anode C

Top view of tetra-lateral type electrodes

Schematic cross-section of the PS-SiPM of the PS-SiPM with 4 anodes

with bulk quenching resistor

_ Pp—Pp . 2Rs+ RN « L L Ps—Pc 2Rs4+ Ry

X = y = x L
Pp+Pp 2Ry ’ Pi+ P 2Ry
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PS-SiPM — NDL (1)

The device, with an active area of 2.2
mm x 2.2 mm, demonstrated spatial

resolution of 78-97 um, gain of 1.4 x 10°
s 135 and 46-ps time jitter of transmission
LSS L delay for 210—230 photons.
e =]
i ) 2 125
LS
I

-100 0 100 200 300 400 500
X position (pm)

Reconstruction of nine positions of light spots from optical
fiber tested in the central part of the device

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 9, SEPTEMBER 2014
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SiPMs with Bandpass Dichroic Filters

Optical microscope Green bandpath filter
picture of the STMicro with 5x5 mm area and
SiPM (548 cells, 67.4% 1.1 mm thickness

geometrical factor)

Such a photo-sensor can be very used in
applications where protection of the detector from
unwanted light background (ambient light for
example) is required.

(M.Matzillo et al., to be published in Sensors)
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PDE spectral shape measured at 24 °C and
dVB=3 V on n-on-p SiPM with and without BP
filter

~m-SMD S5iPM

=8-5MD SiPM+BP Filter
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PDE measured at 515 nm vs bias on n-on-p

SiPM with and without BP filter
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TSV technology (no bonding wire)

(KETEK — Photodet-2015
(Troitsk))

vbias
N TSV-MPPC 4x4ch. Array

+512642-0404PA-50 : 3mmO-4x4ch., CSP, 3.2mm pitch
+S512642-0404PB-50 :w/ SAMTEC connector
X 512643 series (3.6mm pitch type)

TSV-MPPC Array

Through Silicon Via

2D MPPC Array with TSV

50pm pitch, 3x3mm chip,
16x16 channels with Connector type

Yu. Musienko, RICH-2016 34

200um 200um 200um 200um
| — i

) { o
O

(HPK: Koei Yamamoto, 2" SiPM
Advanced Workshop, March 2014)



Summary

Significant progress in development of SSPMs over last 3 years by several developers:

High PDE: ~50-60% for blue-green light

SiPMs with good sensitivity (PDE>10%) for VUV light have been developed
Dark count at room temperature was reduced: ~30 kHz/mm?

Low optical cross-talk: <1-5% for high OV

Fast timing: SPTR~75 ps (FWHM)

Large dynamic range: >10 000 pixels/mm? (with high PDE>30%)
Very fast cell recovery time: ~4 ns

Large area: 6x6 mm? and more

TSV technology was introduced to build very compact SiPM arrays
Position-sensitive SiPMs with good position resolution: <100 um
SiPMs demonstrated their rad. tolerance up to 2.2*¥10'* n/cm?

SiC, GaAs, InGaP SSPMs were successfully developed

Yu. Musienko, RICH-2016
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SSPM perspectives (3-5 years)

My point of view:

Further work to reduce correlated noise (this is one of the limiting factors for many
applications)

Small cell pitch (5 um), large dynamic range SIPMs

DUV SiPMs with good sensitivity (PDE>30%) for VUV light

Dark count at room temperature can be reduced: <10 kHz/mm?
Development of SiPMs for fast timing: SPTR<50 ps (FWHM)

Fast cell recovery time: 2-3 ns

Large area: 10x10 mm? and more

PS SiPMs with position resolution: <50 um for single photons
SiPMs with rad. tolerance up to 5*10'* n/cm?

Further development of SiC, GaAs, InGaP SSPMs.

Price will go down (for large quantities) <10 CHF/cm?-...

Yu. Musienko, RICH-2016
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