The new CLIC Detector Simulation Model with Full Silicon Tracking

Nikiforos Nikiforou CERN/PH-LCD on behalf of the CLICdp collaboration

1st FCC-ee mini-Workshop on Detector Requirements CERN, June 17th 2015

Outline

- Detector requirements and experimental conditions
- Evolution of detector models since the CDR
- CLIC detector concept and ongoing optimization efforts
- Implementation in Software
- Conclusions

CLIC Physics Goals → Detector Requirements

- Momentum resolution
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons

 $\rightarrow \sigma_{P_T}/p_T^2 \sim 2 \times 10^{-5} \text{GeV}^{-1}$

- Jet energy resolution
 - Separation of W/Z/H di-jets $\rightarrow \sigma_E / E \sim 3.5\%$ for E > 100 GeV
- Impact parameter resolution • c/b-tagging, Higgs branching ratios $\rightarrow \sigma_{r\phi} \sim 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu m$
- Angular coverage
 - Very forward electron tagging \rightarrow Down to $\theta = 10$ mrad
- + Requirements due to CLIC beam structure and beam-induced backgrounds

The CLIC Experimental Environment

	CLIC at 3 TeV	Drive timing requirements for the		
Luminosity	$5.9 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	CLIC detector		
Bunch separation	0.5 ns			
#Bunches per train	312	Low duty cycle		
Train duration	156 ns 🕨 🖌	 Power pulsing (turning power) 		
Train repetition rate	50 Hz 🖌	off when not needed)		
Particles per bunch	3.72 ×10 ⁹			
Crossing angle	20 mrad	Very small beam profile at the		
$\sigma_{\rm x} / \sigma_{\rm y} [{\rm nm}]$	≈ 45 / 1 🛛 🗲	$\Rightarrow Verv high E-fields \Rightarrow$		
σ _z [μm]	44	Beam-beam background		
CLIC bunch structure	- 6	156 ns 20 ms		
 not to scale - N. Nikiforou, 17 June 2015 1 train = 312 bunches, 0.5 ns apart 				

Beam-Induced Backgrounds

e⁺e⁻ Pairs

Janen

Beamstrahlung

- Beamstrahlung:
 - Pair-background
 - Coherent e^+e^- pairs: 7×10^8 /BX
 - \circ Very forward
 - Incoherent e⁺e⁻ pairs: 3 × 10⁵/BX
 - \circ Rather forward
 - High occupancies influence detector design
 - Ο γγ to hadrons (3.2 events/BX @ 3 TeV)
 - Energy deposits (19 TeV/train @ 3 TeV)
 - Main background in calorimeters and trackers

Evolution of Detector Designs

For the CLIC CDR (2012): Two general-purpose CLIC detector concepts

• Based on initial ILC concepts (ILD and SiD) but Optimized and adapted to CLIC conditions

Concept\	ILD (ILC)	CLIC_ILD	SiD (ILC)	CLIC_SiD	New Model	CMS†
Tracker	TPC/Silicon	TPC/Silicon	Silicon	Silicon	Silicon	Silicon
Solenoid Field [T]	3.5	4	5	5	4	3.8
Solenoid Free Bore [m]	3.3	3.4	2.6	2.7	3.4	3.0
Solenoid Length [m]	8	8.3	6	6.5	8.3	13
VTX Inner Radius [mm]	16	31*	14	27*	31*	40
ECAL Inner Radius [m]	1.8	1.8	1.3	1.3	1.5	1.3
ECAL ΔR [mm]	172	172	135	135	159	500
HCAL Absorber B / E	Fe	W / Fe	Fe	W / Fe	Fe	Brass
HCAL λ _ι	5.5	7.5	4.8	7.5	7.55	5.8 Barrel/10 EC
Overall Height [m]	14	14	12	14	14	14.6
Overall Length [m]	13.2	12.8	11.2	12.8	10.4	21.6

* For $\sqrt{s} \lesssim 500$ GeV a variant with a VTX inner radius smaller by 6 mm is used † See [16] for a nice comparison of CLIC and LHC detectors

CLIC Detector Performance Figures Twiki

https://twiki.cern.ch/twiki/bin/view/CLIC/ClicNDM_PerformanceNumbers

Detector Characteristics Requested by FCC-ee

- + Detector Characteristics Requested by FCC-ee
 - ↓ Basic geometry:
 - Radius of tracking system
 - ↓ Vertex Detector
 - ↓ Silicon Tracker:
 - Length of magnetic field coverage
 - Magnetic filed intensity:
 - Tracking coverage in eta/theta,
 - Eta/phi granularity of hcal and ecal
 - Momentum resolution formula for charged tracks
 - energy resolution for electrons and photons
 - Implementation for muons
 - ↓ impact parameters resolution
 - identification and mis-idenfication efficiency for particles: muons, electron, pions, kaons, ...
 - ↓ neutral hadron energy fraction lost in hcal and ecal (sum =1)
 - ↓ energy resolution formula for jets
 - ↓ b-tag efficiency (optional)

Basic geometry:

Radius of tracking system

Vertex Detector

- Barrel: 3 double layers Pixels with 3 micrometer resolution
 - Rin = 30.825 mm
 - Rout= 60 mm
 - MaxZ= 130 mm
- Endcap: Double layers where petals are arranged in a "Spiral" geometry. Pixels with 3 micrometer resolution
 - Min z: 160 mm
 - Max z: 298.8 mm
 - Min r: 33 mm
 - Max r: 102 mm
 - Dz between first and last sensitive layer: 136 mm
 - Petal angle: 45 degree

Silicon Tracker:

Technology not decided yet, should be either "large" pixels or short strips, or a combination of the two. Will comprise an "Inner Tracker" and an "Outer Tracker" in the barrel.

- Rin=61 mm
- Rout=1500 mm
 - N. Nikiforou, 17 June 2015

- Performance figures collected in twiki
- For reference and/or perhaps sue in fast sim
- Most of them are there, with some references
- Others to come

Proposed Layout in New Detector Model

Vertex Detector Optimization

Use flavor tagging as a gauge in various tests :

1. Effect of material (most significant effect on performance)

- 2. Vary inner radius (dictated by background rates ↔ B-field)
- 3. Effect of spiral geometry (only small impact, better airflow)
- 4. Single vs. double layers (minor impact, benefits for support)

material (left) or larger radius (right)

(N.Alipour

Tehrani,

Silicon Tracker

- A TPC tracker would have very high occupancies (30%) for CLIC @ 3 TeV with 1x6 mm² pads (without safety factors)
 - We use an All-Silicon Tracker for our new model

- Fast Simulation studies (LicToy) to determine optimal parameters
- Material Budget $\rightarrow \sim 1\% X_0$ per layer
 - Requires very thin materials/sensors
 - Less critical than in Vertex Detector
- Single point resolution: ~7 μm
 O Critical for high-momentum tracks

geometry (D. Dannheim et al. [3])

Silicon Tracker Radius/ B-field

Tracking performance depends on tracker radius and magnetic field

$$\frac{\sigma(p_{\rm T})}{p_{\rm T}^2} \propto \frac{\sigma^{meas}}{\sqrt{NB \cdot R^2}}$$

Stronger dependence on *R*

- Can compensate reduction of B in new detector by rescaling R by $\sqrt{B_{nom}/B}$
- Increase from 1.3 m (CLIC_SID) but not much gain by going to 1.8 m (CLIC_ILD) -> Converged to 1.5 m for new model

N. Nikiforou, 17 June 2015

More on Magnetic Field

- B-Field and R affect Particle Flow Performance
 - Previous ILD studies by M. Thomson and J. S. Marshall [4,5]
- Aiming for an outer tracking radius of 1.5 m
- A magnetic field strength of up to 4.5 T should be technically feasible
 - Use 4 T for next simulation model
- Effects of non-uniform magnetic field currently under investigation
 - Implementation of more realistic field map underway
 - Changes in tracking software

- Tracker length: at least ~CLIC_ILD (4.6 m)
 - Motivated by physics in the forward region (e.g. Higgs self-coupling)
 - Reduce Endcap Yoke thickness by ~1.2 m and use End coils

More Tracker Optimization (R. Simoniello[9])

- **Fast Simulation** (LicToy) Study varying **geometry and layout** (**R**, length, number of layers, etc) as well as **material** (supports, cabling, cooling)
 - Use $p_{\rm T}$ and d_0 resolution to gauge performance
- Full simulation studies also ongoing with new Reconstruction Software

Optimise gap between barrel/forward and the outer radius of the forward disk

13

Occupancy in the main tracker

- High occupancies in certain regions
- Full Mokka-based (Geant4) simulation using a modified CLIC_ILD detector driver (TPC replaced with Si Layers)
- Assume 100 mm × 50 μ m strips, avg. cluster size 2.6 , safety factors 5 (pairs) and 2 ($\gamma\gamma \rightarrow had$) (Recent study by A. Numberg[10]. See also LCD-Note-2011-021[15])

Need for large pixels and/or short-strips

Maximal strip length to be below 3% limit depends on layer (2 – 50 mm in barrel)
N. Nikiforou, 17 June 2015

Silicon Tracker: Recap

- Optimization for an all-silicon tracker ongoing
- 5 6 tracking layers with an *Inner* and *Outer Tracker*
 - Support tube for extraction with beampipe assembly

- Power pulsing?
- Air cooling is probably not feasible in a large tracker volume
- Radiation level 10⁴ times lower than LHC
 - Now starting a tracker hardware R&D

Calorimeter Optimization

- High granularity imaging calorimeters to use with Pandora Particle Flow Algorithms
- Variations on Number and Layout of Layers, Cell size, absorber material and thickness, active material and thickness, total depth, ...
- Optimization performed also in collaboration with ILD
 Used mainly ILD-based Mokka drivers and ILD software chain
- Need to recalibrate detector response with each variation
 - Developed a quasi-automatic calibration procedure
- Gauge model performance using:
 - Single particle response
 - Jet Energy Resolution ($Z \rightarrow uds$, $WW \rightarrow \nu \ell ud$, $ZZ \rightarrow \nu \nu dd$)

ECal Optimization

- Si vs Sc: No significant effect on JER
- # Layers: Not very important for higher energy jets (PFA confusion dominates): Not much more improvement from 25 to 30 layers
- **Cell size:** Becomes important for higher energy jets (where PFA confusion dominates)
 - JER degradation from 3% to ~3.5% when increasing cell size from 5x5 mm² to 15x15 mm²
 - Combinations of different granularities in layers considered
 - No significant gain for the extra complexity

HCal Optimization

- Example: HCal Barrel Absorber
 0 mm Tungsten (W)
 Keep same Depth at ~7.5 λ_I
- Full Geant4 detector simulation + PandoraPFA + FastJet
- Performance shown to be similar for tungsten and steel
- Steel is cheaper and easier to process
 - \Rightarrow Use Steel as an absorber for the HCal
 - 60 layers
 - o 20 mm Steel/3 mm Scintillator
 - o 30x30 mm² Cell size

E.g. study overlap of m_W and m_Z measurement in $WW \rightarrow \nu\ell ud$ and $ZZ \rightarrow \nu\nu dd$ events

Implementation in SW

- Detector Implemented in DD4hep and in very good state
 - In package "lcgeo" with sharing/reuse of subdetector drivers with other experiments where possible
- Evolving, more detail being added continuously
 - Geometry driver development paradigm evolved from an SiD model (resized, adapted to CLIC_SiD) <- DD4hep is Flexible!
- A Simulation and Reconstruction framework based on DD4hep and DDG4/DDRec is the way forward for us
- Working in collaboration with ILD to develop/validate reconstruction software based on DD4hep
 - Tracking software
 - PandoraPFA

- Fairly resizable and scalable drivers implemented in DD4hep
 - Simpler drivers (e.g. no spirals) available as well
- Most important parameters (radii, layers, module layout,...) controlled by the "compact" xml
 - In principle not even need to recompile C++ driver!
- It works well too! Hit map from 100 Hvv events simulated with DDG4 below

- Based on DD4hep/DDRec
- Track Fitting Strategy:
 - Fit inside-out starting with vertex pixel hits
 - 1D hits in main tracker (strips) provide no constraint in z so cannot be used to initialize tracks
 - Finally smooth back to third hit and fit inside from there
- Current pattern recognition being developed from ILD Celloular Automaton-based Vertex patt. Rec.

Calorimeters

Entries/keV

104

10²

<detector name="ECalBarrel" type="ECalBarrel_o1_v01" readout="ECalBarrelHits">

<detector name="HCalBarrel" type="HCalBarrel_o1_v01" readout="HCalBarrelHits">

> <detector name="Solenoid" type="Solenoid_o1_v01"

<detector name="HCalEncap" type="HCalEndcap_o1_v01" readout="HCalEndcapHits">

<detector name="ECalEncap" type="ECalEndcap_o1_v01" readout="ECalEndcapHits">

- Fairly scalable drivers
- Radii, Layer/module composition in compact xml

<detector ...>

```
<dimensions numsides="HCal_symmetry" rmin="HCal_inner_R" z="HCal_half_L*2" />
<layer repeat="(int) HCal_layers" >
 <slice material="Steel235" thickness="0.5*mm"/>
<slice material="Steel235" thickness="19*mm"/>
 <slice material="Polysterene" thickness="3*mm" sensitive="ves"/>
 <slice material="PCB" thickness="0.7*mm"/>
 <slice material="Steel235" thickness="0.5*mm"/>
 <slice material="Air" thickness="2.7*mm"/>
 </layer>
</detector>
```

Simulation and reconstruction under validation

Conclusions

- New simulation model for a detector at CLIC evolving from previous CDR models based on modified ILD designs
- Optimization result of a big effort from many people and still ongoing
- Important R&D efforts also ongoing (not covered today)
- New detector model implemented and being refined in DD4hep with relative flexibility/scalability
- Users of ILCSOFT and the ILD software chain
- Developing simulation and reconstruction software based on DD4hep in collaboration with ILD
- Some references available on next slide

References

- 1. L. Linssen et al., Physics and Detectors at CLIC : CLIC Conceptual Design Report, CERN-2012-003
- 2. N.Alipour Tehrani and P. Roloff, Optimisation Studies for the CLIC Vertex-Detector Geometry, CLICdp-Note-2014-002
- 3. D. Dannheim et al., Slides at https://indico.cern.ch/event/309925/contribution/2/material/slides/0.pdf
- 4. M. Thomson, Nucl.Instrum.Meth. A611 (2009)
- 5. J. Marshall, Slides at http://indico.cern.ch/event/309926/contribution/1/material/slides/0.pdf
- 6. B. Cure, Slides at https://indico.cern.ch/event/314325/contribution/1/material/slides/1.pdf
- 7. M. Thomson, Slides at http://indico.cern.ch/event/309926/contribution/1/material/slides/0.pdf
- 8. M. Valentan et al, LiC Detector Toy Fast Simulation
- 9. R. Simoniello, Slides at https://indico.cern.ch/event/376800/session/3/contribution/5/material/slides/0.pdf
- 10. A. Nurnberg, Slides at https://indico.cern.ch/event/376800/session/2/contribution/28/material/slides/0.pdf
- 11. M. Killenberg, <u>LCD-Note-2011-029</u>
- 12. J. S. Marshall, Slides at https://indico.cern.ch/event/336335/session/6/contribution/5/material/slides/0.pdf
- 13. F. Gaede, Slides at https://indico.cern.ch/event/376800/session/0/contribution/12/material/slides/0.pdf
- 14. M. Petric, Slides at https://indico.cern.ch/event/376800/session/0/contribution/11/material/slides/0.pdf
- 15. D. Dannheim, A. Sailer, Beam-Induced Backgrounds in the CLIC detectors, LCD-Note-2011-021
- 16. E. van Der Kraaij, Detector challenges at CLIC, contrasted with the LHC case, slides at http://indico.cern.ch/event/210720/

Backup Material

• N. Nikiforou, 17 June 2015

CLIC and Detector Documentation

- 2012: CLIC Conceptual Design Report published
- 2012: CLIC detector and physics collaboration (CLICdp) was set up
- 2012/2013: CLIC input to the European strategy and the Snowmass Process in the US

More on Beam-Beam Effects

CLIC power and energy

Table 5.1: Nominal power and efficiency for staging scenarios A and B, where $W_{main \ beam}$ is for the two main beams.

Staging scenario	\sqrt{s} (TeV)	$\mathscr{L}_{1\%} (cm^{-2}s^{-1})$	Wmain beam (MW)	$P_{electric}$ (MW)	Efficiency (%)
	0.5	$1.4 \cdot 10^{34}$	9.6	272	3.6
Α	1.4	$1.3 \cdot 10^{34}$	12.9	364	3.6
	3.0	$2.0 \cdot 10^{34}$	27.7	589	4.7
	0.5	$7.0 \cdot 10^{33}$	4.6	235	2.0
В	1.5	$1.4 \cdot 10^{34}$	13.9	364	3.8
	3.0	$2.0 \cdot 10^{34}$	27.7	589	4.7

Table 5.2: Residual power without beams for staging scenarios A and B.

Staging scenario	\sqrt{s} (TeV)	Pwaiting for beam (MW)	$P_{shut down}$ (MW)
	0.5	168	37
Α	1.4	190	42
	3.0	268	58
	0.5	167	35
В	1.5	190	42
	3.0	268	58

CLIC_ILD and CLIC_SiD

For the CLIC CDR (2012):

Two general-purpose CLIC detector concepts Based on initial ILC concepts (ILD and SiD) Optimised and adapted to CLIC conditions

• 29

• N. Nikiforou, 17 June 2015

Forward Region Layout in the New Model

Basic Outline of a Detector at CLIC

(Older) Forward region layout

Comparison CLIC/LHC Detector

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution

=> fine-grained calorimetry

Momentum resolution

Impact parameter resolution

Overlapping beam-induced background:

- •High background rates, medium energies
- •High occupancies
- •Cannot use vertex separation
- •Need very precise timing (1ns, 10ns)

•"No" issue of radiation damage (10⁻⁴ LHC)

- •Except small forward calorimeters
- Beam crossings "sporadic"
- •No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

Very precise ECAL (CMS)Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- •High background rates, high energies
- •High occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)

•Severe challenge of radiation damage

Continuous beam crossings

•Trigger has to achieve huge data reduction

Vertex Detector Optimization

Spiral Geometry (better airflow)

Use flavor tagging as a gauge in various

80 θ [°]

- 1. Effect of material (most significant effect on performance)
- 2. Test single vs. double layers
- 3. Vary inner radius (for 4 T or 5 T B-field)

In the new detector model: Use double layers with spirals and modules with 0.2% X_0 per (single) layer, $R_{in} = 31 \text{ mm}$

(N.Alipour Tehrani, P. Roloff [2])

Vertex Detector : Effect of Inner Radius /Material

- Compensates for increase in the rate of Incoherent e-pair background if Bfield is reduced
- Small effect in flavor-tagging performance
- Double-layer modules were simulated with twice as much material
- Extra material leads to undesirable increase of fake rate

In the new detector model: Use double layers with spirals and modules with 0.2% X_0 per (single) layer

- Identify t₀ of physics event offline
 - Correct for shower development and TOF, define reconstruction window around t_0
 - Pass all calorimeter hits and tracks within window to reconstruction

 \rightarrow Obtain physics objects with precise p_T and cluster time information

- Then apply cluster-based timing cuts
 - Cuts depend on particle type, p_T and detector region →Protects high- p_T physics objects
- Also: use hadron collider-type jet algorithms (FastJet)

tCluster

General Requirements on Detector Technologies

- CLIC conditions ⇒ impact on detector technologies:
 - High tracker occupancies ⇒ need small cell sizes (beyond what is needed for resolution)
 - Small vertex pixels
 - Large pixels / short strips in the tracker
 - Background suppression
 - Need high-granularity calorimetry
 - 1 ns accuracy for calorimeter hits
 - $\sim 10 \text{ ns}$ hit time-stamping in tracking
 - Low duty cycle
 - Triggerless readout
 - Allows for power pulsing
 - less mass and high precision in tracking
 - \circ high density for calorimetry

Vertex Detector (pixels)

Flavor tagging capabilities drive the design of the vertex detector

has to be extremely accurate and light !

- 2 billion pixels
- 3 μm single point resolution
- $25x25 \ \mu m^2 \ pixels$ (25 times smaller pixel area than LHC)
 - Pulse height measurement
 - Time measurement to 10 ns
- Ultra-light $\Rightarrow 0.2\%X_0$ per layer
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
 - Aim: 50 mW/cm²
 - Radiation level 10⁴ lower than LHC

high-tech R&D covering several disciplines

Vertex Detector R&D

thin silicon sensor

HV-CMOS sensor + CLICpix

power delivery + pulsing

- N. MIKHOIOU, 17 JUNE 2013

interconnect technology

thin supports

thin electronics + sensor assembly

signal simulations

air cooling simulations/tests

Hybrid Vertex Detector with HV-CMOS⁴²

Pursuing an alternative readout option

Hybrid option with High Voltage-CMOS: Capacitive Coupled Pixel Detector (CCPD)

- HV-CMOS chip as integrated sensor + amplifier
- Capacitive coupling to CLICpix readout chip through layer of glue ⇒no bump bonding

Status: successful initial beam tests in 2014 Further beam tests in 2015

CLIC Vertex Detector R&D Roadmap 43

Hybrid approach pursued: (<= other options possible)

- Thin (~50 µm) silicon sensors
- Thinned high-density readout ASIC (50 μm)
 - R&D within Medipix/Timepix effort
- Low-mass interconnect
- Power pulsing
- Air cooling

CLICpix demonstrator ASIC 64×64 pixels, fully functional

- 65 nm technology
- $25 \times 25 \ \mu m^2$ pixels
- 4-bit ToA and ToT info
- Data compression
- Pulsed power: 50 mW/cm²

Û

Very thin sensors ! Successfully tested at DESY test beam (with existing Timepix ASIC)

CLIC vertex detector: thin assemblies

- 50 μ m sensor on 50 μ m ASIC
- Slim-edge sensors
- Through-Silicon Vias (TSV)
 - eliminates need for wire bonds
 - 4-side buttable chip/sensor assemblies
 - large active surfaces => less material

Medipix3RX with TSV by (CEAIETI)

50 µm thin sensor on Timepix tested at test beam !

First successful picture using Medipix3RX with

N. Nikiforou, 17 June 2015

CLIC Vertex R&D: Power Pulsing

TPC Occupancy in CLIC_ILD

From CDR. See also LCD-Note-2011-029 [11]

(a) Voxel occupancies for $1 \times 6 \text{ mm}^2$ pads

(b) Voxel occupancies for $1 \times 1 \text{ mm}^2$ pads

Fig. 5.11: Voxel occupancies for different pad sizes, averaged per pad row in the TPC for particles originating from $\gamma\gamma \rightarrow$ hadrons, incoherent pairs and beam-halo muons. The data correspond to one complete bunch train and do not include safety factors.

• N. Nikiforou, 17 June 2015

PFA Calorimetry at CLIC

Calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design ⇒ fine-grained calorimetry + Particle Flow Algorithm (PFA)

Hardware + software

Calorimeter R&D

Developing high-granularity calorimeters

- ~80 million readout channels
- (400x larger than LHC)
- To be used with Particle Flow Algorithm
- R&D in the framework of CALICE collaboration
 - Investigating different absorber materials, readout technologies and techniques

N. Nikiforou, 17 June 2015

210 GeV π^- in tungsten-DHCAL

R&D on Scintillator+SiPM

Electron gun in AC-regulated dark room

- Also have a dedicated lab at CERN for Scintillator
 + Silicon PhotoMultiplier testing
- Test bench: electron gun, Device Under Test on movable table, trigger scintillators, read-out electronics
- Study response, uniformity, noise, cross-talk, ...

Scintillator Tile with mounted SiPM

ECal Optimization (J.S. Marshall [12])

- Starting point: 29 layers W absorber (23X₀, 1λ₁), 30 layers Si active medium (1 pre-sampler), divided into 5x5mm² pixels.
- Particle flow means performance depends critically on patternrecognition, not just intrinsic ECAL energy resolution.
- Granularity requirements and use of Si make ECAL expensive: consider scintillator (Sc) with SiPM readout as active medium.
- Examined wide range of ECAL models, developing detailed understanding of resulting jet energy resolutions.

Failure to separate photons from nearby charged hadrons: "photon confusion"

ECal Optimization: Active Material, Number of Layers, Granularity

ILD-based baseline model: **SiW ECal with 29 layers** (23 X_0 / 1 λ_I):

- Tungsten absorber: **20x2.1 mm + 9x 4.2 mm**
- Silicon Active material, **500** µm thickness, **5x5** mm² cells

Forward Calorimetry

R&D performed within the FCAL collaboration

2 forward calorimeters:

- LumiCal + BeamCal
- Electron / photon acceptance to small angles
- Luminosity measurement
- Beam feedback

Absorbers: tungsten, 40 layers of 1 X₀ Sensors: BeamCal GaAs, LumiCal silicon

Angular coverage: BeamCal 10 - 40 mrad, LumiCal 38 – 110 mrad Doses up to 1 MGy Neutron fluxes of up to 10¹⁴ per year

Time window / time resolution

The event reconstruction software uses:

Subdetector	Reconstruction window	hit resolution	
ECAL HCAL Endcaps HCAL Barrel Silicon Detectors TPC	10 ns 10 ns 100 ns 10 ns entire bunch train	$ \begin{array}{c} 1 \text{ ns} \\ 1 \text{ ns} \\ 1 \text{ ns} \\ 1 \text{ ns} \\ 10/\sqrt{12} \text{ ns} \\ n/a \end{array} $	
		· · · · · ·	
t ₀ p	hysics event (offline)		

Translates in precise timing requirements of the sub-detectors

PFO-based Timing Cuts

Region	p _t range	Time cut			
Photons					
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec			
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec			
forward	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec			
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec			
Neutral hadrons					
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	<i>t</i> < 2.5 nsec			
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec			
forward	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.0 nsec			
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec			
Charged PFOs					
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 3.0 nsec			
	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec			

CLIC 1.4 TeV $e^+e^- \rightarrow H v \overline{v} \rightarrow b \overline{b} v \overline{v}$

same event before cuts on beam-induced background

CLIC 1.4 TeV $e^+e^- \rightarrow t\bar{t}H \rightarrow WbW\bar{b}H \rightarrow q\bar{q}b\tau\nu\bar{b}b\bar{b}$

same event before cuts on beam-induced background

HEP Software Development

- Strong involvement with **simulation and reconstruction software** development in collaboration with ILC
- Developing and maintaining the ILCDirac grid computing framework
- Developing a new Detector Geometry Description and Simulation Framework: Detector Description 4 HEP (DD4hep)
 - Will be used by others too: ILC, FCC, LHCb, ...

Schematic overview of the DD4hep framework

• N. Nikiforou, 17 June 2015