Irradiation Pixel CMOS

A. Rozanov, <u>M. Barbero</u> 8.06.2015

Use cases for CMOS pixels in ITK 2024

- Inner pixel layers (R=3-6 cm). Use of FE-RD53 in 65nm technology with 50x50 um pixel size. Four CMOS 25x25 um sub-pixels with thickness <50 um Strong radiation hardness demand up to 1 GRads
- Intermediate pixel layers R=6-25 cm. Use of FE-RD53 with 50x50 um pixel size. Four CMOS 25x25 um sub-pixels with thickness <50 um interesting, but not mandatory.
- Outer pixel layers R> 25 cm Use FE-Ix digital tier with pixel 50x250 um. Low cost bonding (gluing or C4 bumps) mandatory for cost reasons.
- Outer pixel layers R>25 cm Use Full monolithic CMOS chip with classical column readout

Prototypes submitted (few mm²)

	Α	В	C	D	E	F	G	н	1
Node	180nm	350nm	150 nm	180nm SOI	180nm	130nm	150nm	130nm	160nm
Wafer Resistivity	10 ohm	10 ohm 1 khom availab	2 kohm	100 ohm 2k poss.	1-3 k Epi/bul k	3k	2k	10 ohm 3k ???	Select epi
Full CMOS	No	No	Yes	yes	Yes	No	Yes	Yes	Yes
Backside implant	No	No	Yes	No	No	No	Yes	No	No
HEP experience	4 subm Lab Test beam	2 subm Labor Also strips	2 subm Lab No CCPD	Subm Lab	Subm Lab	Subm 6/2014	Subm Receiv 2/2015	Subm Lab	tbd
Groups	Heidelb Geneva CPPM	Heidel. Geneva	Bonn Prag.	Bonn CERN	Bonn (Strasb)	Bonn	Bonn Heidel. CPPM	CPPM Heidel.	INFN

AMS-180nm CCPD prototypes

- Four versions tested standalone and glued on FE-I4. Most advanced results for today from V2 and V4.
- HV with 10 ohm wafer now. Prospect of HR ~100 ohm or 2 kohm in fall 2015?
- 3 CMOS sub-pixels 33x125 um readout by one FE-I4 pixel of 50x250 um

HV2FEI4 series V1: first proto, proof of concept, not hard hard

140

Discriminator is dead at ~0.5 MRads.

Preamplifier is dead at 160 MRads in high gain mode. Whereas it is alive up to 410 MRads in low gain mode.

Vnload=5 HV=30V

VNLoad=5 HV=30V BLM

HV2FEI4 series

- V2: structures Rad-hard
- AMS 180 nm
- $2.2 \times 4.4 \text{ mm}^2$.
- 60 column×24 rows
- Pixels: $33 \times 125 \mu m^2$.
- For actual X-ray irradiation
 - only standalone way tested
 - no CCPD coupling to FEI4
 - no strip readout

65

HV-CMOS irradiation, ATLAS HV-MAPS wo

HV2FEI4_V2

• Few pixel flavors with enhanced rad-hardness: guard rings, circular transistors... (different pixel types lead to different gains -expected-).

Sr-90 at HV=30V

HV-CMOS irradiation, ATLAS HV-MAPS workshop, Heidelberg June 8th 2015

HV curent vs Dose

- After each 100 Mrad apply 2 hours of 70° C annealing
- After 5 days room temp annealing the current I=590 nA
- After 6 days and one row selection I=465 nA

HV2FEI4 V2

 After 862 MRad Xray (annealing of 2h at 70° C each 100MRad), after parameter retuning, amplifier gain loss recovered to 90% of initial value

New settings after irradiation

- BLR = 1 (instead of 20) reduce threshold, Disc signal length increased from ~ 1us to ~1.3 us
- VNLoad = 60 (instead of 5) increase Ampli output by factor 2-3 (only linear transistor ...)
- VNComp = 5 (instead of 20) increase the Disc signal length
- VNBuff = 0 (instead of 30) reduce consomption Vdda
- Gate = 2.0 V (Instead of 2.2V) shape Discr output
- Enable one row (row=1) increase Ampli signal by 1.5-2.0, disconnect not used pixels, reduce Issa

After 862 MRAd and Enable row 1 only

• Ampli scope 1V injection all 8 pixels

V2 Threshold measurement with S-curve

• Produce S-curve by vary the injection pulse from zero to 1 V. 50% point on S-curve defines the threshold point.

HV-CMOS irradiatio A. Rozanov AUW CMOS Heidelberg June 8th 2015

session 4 11 13

Injection 1V signal after 862 MRad

• Both RadHard and Normal pixels works

RadHard pixel col2 row 1

Normal pixel col29 row 1

Normal pixel after 862 MRad

• pix 29x1 Sr90 signals seen, Fe55 only weak Amp

Sr90 signal

Fe55 signal

RadHard pixels after 862 MRads.

- Sr90 and Fe55 signals seen !!!
- Enable row 1 only, pix col2xrow1

Sr90 signal

Fe55 signal

Test beam efficiency CCPD-V4

- Non-irradiated
- HV=-12V

3200

- Vth=0.84V
- Efficiency=99.7%

- Neutron irradiated 10¹⁵ n_{eq}cm⁻²
- HV=-30V
- Vth=0.84V
- Efficiency=96.2%

DUTPlane0MapCR

3100	0.698311	0.705934	0.75082	0.77324	0.802837	0.840523	
2000	0.98808	0.996848	0.998104	0.998945	0.997946	0.995717	
3000	0.986867	0.9989	0.998516	0.998643	0.997219	0.996656	
2900	0.984458	0.999664	0.998062	0.998973	0.998183	0.996785	
2800	0.98117	0.997056	0 998444	0 998648	0 997848	0.998371	
2700							
2600	0.97609	0.99844	0.998411	0.998705	0.998688	0.997915	
2500	0.977522	0.997927	0.997589	0.998447	0.998059	0.997712	
2400	0.976337	0.99826	0.996662	0.995933	0.996687	0.996132	
2300	0.793624	0.809822	0.746308	0.753596	0.706448	0.667482	
2000	0.384919	0.472011	0.366561	0.412729	0.38445	0.44137	
2200	200	400 0	600 800	1000	1200	1400	1600

In pixel efficiency CCPD-V4

- Non-irradiated
- HV=-12V
- Vth=0.84V
- Efficiency=99.7%
- Efficiency close to specification

- Neutron irradiated 10¹⁵ n_{eq}cm⁻²
- HV=-30V
- Vth=0.84V
- Efficiency=96.2%
- Inter-pixel regions to be optimized to increase efficiency

In-Pixel Timing

- Spatial dependence of timing disappears after irradiation due to the killing of diffusion
- Time width of 5 BC is still far from specification. In future: smaller thresholds, HR increase of signal and time slewing corrections

402 (unirradiated, -12V)

BCID distributions AMS 180 nm sample CCPD-V4 sn404, bias 30V, 10¹⁵ neq/cm² v4 Timing vs Threshold.

CCPD V4 X-ray irradiation

- Stand alone CCPD V4 irradiated up to 1000 MRads in X-rays
- Increase of leakage current only after 400 MRads
- After 26 days room temperature annealing drop to 380 nA, no need for high temperature annealing as for V2
- Amplifier with linear FB transistor stable (+-15%) up to 1 Grad, but noisy after 100 MRads

CCPD V4 after 1 Grad in X-rays

• Pixels with circular feedback transistors keep low noise up to 1 Grad, but more variation of gain

Conclusions

- CMOS pixel prototypes produced in 8 different technologies.
- First CCPD V1 prototype were radiation soft.
- HV2FEiI4_V2 is alive after 862MRads in X-ray irradiation. Need retuning after irradiation.
- Most advanced CCPD test beam results in AMS 180 nm technologies results 99.7% efficiency and 5 BC timing spread. Timing to be improved (lower thresholds, higher signals with HR, time slewing corrections)
- With CCPD-V4, reached 1 Grad in X-ray and few Mrads in 24 GeV proton beam. Fe55 signal is observed after 1 grad.
- V4 : Proton irradiation to be continued next week.
- CCPD-LF proton irradiation to be started next week.

Backup

CCPD V4 Leakage current vs. dose

HV-CMOS irradiation FATLAS HV-MAPS workshop, Heidelberg June 8th 2015

CPPN

HIV [nA]