Developments in CMOS for strip detectors

H. Grabas for the CHESS collaboration UCSC – SLAC – KIT

HV-CMOS for strips

Demonstrator: CHESS-1

- Multiple active and passive HVCMOS pixel matrices
 - Allows to measure capacitance/resistance
 - Response signal, even for low signals (i.e. real particles)
- Large array to allow for charge deposition measurement (depletion depth, 2x2[mm] in size)
- Small passive array to support edge-TCT (Laser)
- Component array to study radiation defects in transistors/caps/diodes

CHESS1 results

- Leakage at 100V is:
 - 0 0.15nA/strip before IR

6.4nA /strip after IR (100MRad gamma)

۲

•

CHESS1 charge collection

Sr-90 electrons, mean charge, 25 ns shaping

□ Large drop of collected charge after 5e15 n/cm²

- Initial acceptor removal finished
- Depleted region narrows because of radiation induced defects

Radiation introduced deep acceptors (stable damage): $g \sim 0.02 \text{ cm}^{-1}$

Initial concentration

Towards CHESS2

- CHESS-2 will the second demonstrators for both HR & HV-CMOS for strip sensor R&D.
- CHESS1 and HV_Strip1 have proven that HV_CMOS can be used for Strip detector
- CHESS-2 is meant to demonstrate that HR & HV_CMOS can cope with the physics at HL-LHC.
- CHESS-2 will integrate full length strips + readout.
- Design done in collaboration with UCSC, SLAC and Ivan Peric.
- Slides are for HV-CMOS but a CHESS-2 equivalent will be submitted as well in the HR-CMOS process by Renato, following the same specifications.

Strip detector hit occupancy

strips

Table 1: Number of hits/clusters corresponding to the 95% and 99% quantiles of the distribution of hits/clusters per SCT chip in $t\bar{t}$ events with $\mu = 140$. Chips with zero hits/clusters are not included in the calculation.

Strip detector hit encoding

- 1% average occupancy of the detector is not an issue.
- No de-randomizer in the sensor.
- Need to be able to cope with bursts of ~ 20 hits in the detector.
- Contrary to the Baseline Sensor, we cannot retain all the hits in the CHESS detector.
- Need to encode strips hits.
- Need to minimize number of wirebonds.
- Can send 8 words at 320MHz per 25ns bunch crossing (no buffering in chip).

Nb of strips in group	Wirebonds needed	Wirebonds per strip	Max. number of hits @320MHz
512	5 + 1 + 9 = 15	0.03	8
256	$(5 + 1 + 8) \ge 2 = 24$	0.045	16
128	$(5 + 1 + 7) \ge 4 = 52$	0.1	32
64	$(5 + 1 + 6) \ge 8 = 96$	0.18	64

• We are going to 128 strips group retaining 8 hit for each group.

Single strip hit selection

- Simulation by Marco Battaglia shows that double hit in z direction his highly suppressed.
 ~2.10⁻³ probability
- Will be investigated in the high pile-up environment (should be ok given the low occupancy).

Baseline to HV-CMOS

Baseline

HV-CMOS

Number of strip	256 (for comparable area)	Number of strips	512
Strip pitch	75µm	Strip pitch	40µm
Strip segmentation	None	Strip segmentation	32
		Segment length	800µm
Number of sensor	2 (stereo)	Number of sensor	1 (can be thinned)
Output signal	Analog	Output signal	Encoded Digital
Max. nb. of hits	256/ b. crossing	Max. nb. Of hits	32/ b. crossing
Nb. of wirebonds	1/strip	Nb. of wirebonds	0.1/strip

Sensor dimension

• Ideally we would like a 20mm x 25mm sensor (to be compatible with the baseline Strip sensor).

- Can't do a monolithic 20mm x 25mm due to reticle size
- 1mm of periphery

CHESS-2 main architecture

- Design done between UCSC, SLAC & with Ivan Periç.
- Engineering run 20, 80, 200 Ohm bulk resistivity

- Pixels without discriminator have smaller detector capacitance. But there might be analog cross-talk going to the edge.
- 50 & 30% diode fraction

Pixel amplifier

- Most probable value for MIP is ~1500e at 120V for a 20 Ohm substrate.
- Landau distribution significant values start ~700e (200hms).
- For a 32 segment strip, we require threshold to noise of 5 to 1.
- Requires below 25ns peaking time (LHC bunch rate).
- Note: Signal to noise is improved for higher resistivity substrate.

Details of the pixels

- Active amplifier and threshold trimming in each pixel.
- Discriminator front and trimming in pixel
- Full discriminator in pixel or periphery.
- Latches and encoding logic at the periphery.
- Capabilities:
 - Hot pixels masking.
 - Injection of calibration signal.
 - 4bit threshold trimming.

Pixel schematic from I. Peric and E. Vilella

Amplifier simulation

- New amplifier design by Eva Vilella and Ivan Peric
- Fast: ~10ns risetime
- SNR = 10 for 700e
- Power 30µW/pixel, 0.5W per sensor.

Comparator output [1]

- The sensor is 2.5cm long
- The lines are very coupled and very capacitive:
 - o 32 lines 0.6µm spacing
 - o 2.5cm long
 - Up to 1pF capacitance to other metals (gnd).
- Full in pixel comparator with digital output:
 - Digital output no worries about crosstalk
 - Bigger layout added detector capacitance

Comparator output [2]

- The lines are very coupled and very capacitive:
 - ο 32 lines 0.6μm spacing
 - o 2.5cm long
 - 1pF capacitance to other metal (gnd) maximum.
- Partial in pixel comparator (less added capacitance):
 - Current output less cross-talk expected
 - Higher mismatch on the comparator.

Strip Hit Encoding

- Single hit in the strip
 - Encoded position of the first hit
- Double or multiple hits in the strip
 - Encoded position of the first hit + Flag

0b00111

- The first hit in the strip is encoded on **5bits**
- Additional hit **Flag** is raised in case of multiple hits.
- Flag provides loose information on the position of the additional hits.
- During strip encoding an internal bit is also raised when the strip is hit.

Hit encoding

More than 8 hits

Output data format

SACI – SLAC ASIC Control Interface

Serial Interface with handshake protocol

SLAC

5 Signals

- 3 shared: saciClk, saciCmd, saciRsp.
- 1 dedicated select line per slave: saciSelL.
- 1 Reset Line (*RstL*) can be shared with the ASIC Global Reset.
- Operated between 0V and 3.3V
- Allows multiple SACI on same bus (parallel mode).

Layout

SLAC ASIC Control Interface (SACI)

PADS

	SACI - Signals			SLAC	
SACIcik SACIselL					
SACIcmd SACIrsp SACIrstl		XX_XX_XX	/\\X_XX_XX_XX_XX		

SACIcmd (serial signal):

SACIrsp (serial signal):

SACI - Commands

C	~
-3	Č

RW	CMD	Function
		Clock Cycle
0/1	tbd	Read/Write Global Register
1	tbd	Write Matrix
0/1	tbd	Read/Write Pixel

• The ASIC decoded the command last 4 bits. Any given command longer than 4 bits will be interpreted as a 4 bit command.

Encoding Read-Out scheme – Overview

-SLAC

LVDS Driver – Simulated Performance

Schematic simulated at all condition (wo,wz,ws,wp) at room

Specs	Typical	Min	Max
Differential Output Voltage (@ $R_{LOAD} = 100\Omega$)	600mV		
Output Common Mode	1.2V	0.5	2.8
Current	3mA	0.2mA	3.5mA*
Speed	320MHz		500MHz
Supply	3.3V		

* Can meet standard LVDS requirements.

14

SLAC

LVDS Driver - Layout

LVDS Receiver – Simulated Performance

Schematic simulated at all condition (wo,wz,ws,wp) at room temperature.

Specs	Typical	Min	Max
Differential Input Voltage (@ $R_{LOAD} = 100\Omega$)	600mV		
Output Common Mode	1.2V		
Input Current	3mA*		
Speed	320MHz		500M Hz
Supply	3.3V		

* Can meet standard LVDS requirements.

SLAC

SLAC ASIC Control Interface (SACI)

Serial Interface with handshake protocol

5 Signals

- 3 shared: saciClk, saciCmd, saciRsp.
- 1 dedicated select line per slave: saciSelL.
- 1 Reset Line (*RstL*) can be shared with the ASIC Global Reset.
- Operated between 0V and 3.3V
- Allows multiple SACI on same bus (parallel mode).

Layout

CHESS-2 specification

	Specifications		
Size of the chip	0.6cm x 2.5cm		
Pixel size	40μm x ~800μm		
Number of strips	127		
Number of pixels per strip	32		
Readout speed	320MHz		
Output buffers	LVDS with tunable signal amplitude		
Maximum number of hit per strip	1 + overflow flag		
Maximum number of hits in strip array	8		
Size of data output	13 bits		
Format of data output	5 + 1+ 7 bits		
Latency	Fixed latency		

Summary

- A huge amount of knowledge has been accumulated from CHESS-1 & HV_Strip1
- Physics simulation seems to indicate that 128 strip grouping retaining 8 hits should meet occupancy requirements.
- More simulation would still need to be done including pile-up and harsh conditions in layer 1 and endcaps.
- Design in progress for submission end of June.
- HV & HR are collaborating for this new submission following the specs

(https://twiki.cern.ch/twiki/bin/viewauth/Atlas/CHESSStripT estChip).

• Engineering run scheduled with res. from 20 to 2000hms.