

Modules and Mechanics

Fabian Hügging

ATLAS HV-MAPS Workshop Heidelberg - 08-June-2015

huegging@physik.uni-bonn.de

Hybrid Pixel Modules

- Basic building block of the pixel detector:
 - smallest detector unit which can be operated
- Hybrid pixel modules consist of:
 - sensor
 - FE-chip(s)
 - printed circuit board with components and interface to outer world
- Chip and sensor match on pixel basis:
 - chip covers full sensor area
 - FE and sensor pixel have the same size and are connected via bumps

Requirements of ITk pixel modules: Rates and radiation

Radiation levels:

 10 Mgy and 2*10¹⁶ n_{eq}/cm² for the innermost layer

Readout:

- Trigger requirement
 - BC : 40 MHz
 - <L0 accept rate> : 1 MHz
 - Latency : 6 μs
- Readout pixel detector fully at L0
- Simulation say for inner barrel layer : Hit rate = 2 GHz/cm²
- 1 MHz trigger rate
 - → 50 MHz/cm² hit rate
 - → 168 MHz/chip (FEI4 size)
- Data size : 16 bits/hit
 - ➔ 2.7 Gbps/chip
- But need low latency
 - need to account for hit rate and trigger rate fluctuations
 - → 5 Gbps/chip

for inner barrel layer

huegging@physik.uni-bonn.de

Pixel structure	Dose (MGy)	Fluence (1MeV neq 10 ¹⁴ cm ⁻²)
Inner Barrel	7.8	134.6
4 th Barrel	0.43	9.4
1 st Inner ring	0.95	17.0
Last inner ring	1.13	16.1
1 st Outer ring	0.44	8.2

Pixel Detector	Module type	Rate/module (Mbps)
Barrel L1	2 chip	5120
Barrel L2	Quad	2 x 4000
Barrel L3	Quad	5120
Barrel L4	Quad	2560
Inner Ring	Quad	2560

from R. Bates, Vertex 2015

Assumes data on a quad multiplexed together

ATLAS HV-MAPS Workshop Heidelberg - 08-June-2015

3

Requirements of ITk pixel modules: Power and Material

- Power budget for ITk modules:
 - inner layers: 0.7 W/cm² for chip and ~0.3W/cm² for sensor
 - outer layers: 0.5 W/cm² for chip and ~0.2W/cm² for sensor
- Material budget for ITk modules:
 - for IBL we achieved: ~0.6% X/X_0
 - for inner ITk layers: $0.5\% X/X_0$
 - outer layers, esp. 5th or 6th pixel layer could be relaxed: ~0.6 0.7% X/X₀

	Yield (%)
Sensor wafers	90
FE wafer	60
Bump-bond	90
Assemblies	95

- An extended pixel system requires low cost pixel modules
- Assumed here a 6th pixel layer
 - 5 pixel layers area = 14 m²

Item	Baseline (area = 8.76m²)	Maximum Pixel system extension (area = 18m ²)
Number of good 2&4 chip modules	6436	13033
Number of 2&4 chip module flip-chip starts	7528	15244
Number of FE wafer bump deposition starts	333	684
Number of sensor wafer starts	1356	2785

from R. Bates, Vertex 2015

Module testing and qualification

- Scale of the extended pixel system requires high production and testing throughput:
 - testability of the modules is an important requirement for the design!
 - modules must be robust and easy to handle before loading
 - need well defined interface for testing → need a test connector
 - handling and protection frame
 - robust shipping frame
 - integration of automated test and tuning routines in the electronics/chips

Module concepts

- module concepts don't differ so much for hybrid, monolithic or CCPD approach:
 - all need a kind of a flex hybrid for the passive components and the interface to the outer world
 - monolithic and hybrid are basically the same
- a TSV technology could help to make the module more robust, e.g. no wire bonds
- for CCPD other configurations are necessary:
 - chip size could be much smaller than sensor sizes
 - connection of both chips to the flex difficult due to face to face orientation

huegging@physik.uni-bonn.de

Gluing vs. bump bonding

Gluing is a potentially cheaper hybridization technique for charge coupled devices (CCPD):

- But there are things to be considered:
 - procedure for a mass production must be developed and tested
 - − cost reduction is probably not so big because only bump deposition and UBM can be omitted → assembly effort is roughly the same
 - still some conductive connections for power and data transmission are needed → not easy for same sized chip and sensor assemblies.
 - HV voltage connection maybe needed on sensor backside
- pure monolithic devices are obviously the best option!

Cooling issues

- Static cooling requirements are clear but there is still an uncertainty:
 - thermal runaway effects are a potential risk → we need the sensor power dissipation with fluence as input for the TFoM requirement of the cooling system
 - I expect that HR CMOS behaves similar as standard planar sensor silicon in terms of leakage current generation
 - A bit more unclear for LR or EPI materials and how the electronics affects all this?
 - This must be addressed for the CMOS sensors basically now!

Powering issues

- It is clear that for HL-LHC inner tracking detectors a usual direct powering scheme will not work!
 - service material budget in the active volume will be too high
 - we need a reduction of about a factor 5 to 10 which can only be achieved by DC-DC power conversion of SP concepts
- Both concepts have severe impact on the module design:
 - integration of regulators on chip and/or on module level
 - bypass and control schemes needed esp. for SP
 - data readout requirements (AC coupling etc,)
- Need to be addressed for CMOS now as well!

ATLAS Inner Det. Material Distribution

ATLAS pixel detector services

Conclusions

- Module design for the ITk pixel detector is constraints by many external factors beyond radiation levels, data rates and readout speed:
 - magnitude of module production requires a good testability, robustness and disfavors a large variation of module types
 - cooling, powering and loading requirements are important to understand inside the whole system
- For monolithic CMOS detectors many things are similar as for hybrid pixel modules:
 - benefit from solutions being developed now for hybrid by just copying them
 - but in the end <u>all</u> these issues must be addressed as well in time!
- For charge coupled CMOS detectors things could be quite different depending on the chosen option:
 - this may complicate life because one have to develop own solutions

BACKUP

Modules of the IBL

universität**bonn**

ATLAS HV-MAPS Workshop Heidelberg - 08-June-2015

Cutting line

Cutting line

Basic Requirements of ITk pixel modules

- Silicon damage (1 MeV) fluences used to model Pixel and SCT leakage currents and depletion voltages, which allow us to anticipate detector performance over its lifetime, including S/N estimates, and required cooling performance
- Ionizing dose measurements important for predicting frontend chip performance
- Charged particle fluences allow us to estimate occupancies
- Radio-activation estimates can dictate procedures for cavern access and detector installation and maintenance

universitätbo

Pixel structure	Dose (MGy)	Fluence (1MeV neq 10 ¹⁴ cm ⁻²)
Inner Barrel	7.8	134.6
4 th Barrel	0.43	9.4
1 st Inner ring	0.95	17.0
Last inner ring	1.13	16.1
1 st Outer ring	0.44	8.2