

Modules and Mechanics

Fabian Hügging

huegging@physik.uni-bonn.de ATLAS HV-MAPS Workshop Heidelberg - 08-June-2015

Hybrid Pixel Modules

- Basic building block of the pixel detector:
	- smallest detector unit which can be operated
- Hybrid pixel modules consist of:
	- sensor
	- FE-chip(s)
	- printed circuit board with components and interface to outer world
- Chip and sensor match on pixel basis:
	- chip covers full sensor area
	- FE and sensor pixel have the same size and are connected via bumps

Requirements of ITk pixel modules: Rates and radiation

Radiation levels:

• 10 Mgy and $2*10^{16}$ n_{eq}/cm² for the innermost layer

Readout:

- Trigger requirement
	- $BC: 40 MHz$
	- <L0 accept rate> : 1 MHz
	- Latency : 6 μs
- Readout pixel detector fully at LO
- Simulation say for inner barrel layer : Hit rate = 2 GHz/cm^2
- 1 MHz trigger rate
	- \rightarrow 50 MHz/cm² hit rate
	- \rightarrow 168 MHz/chip (FEI4 size)
- Data size : 16 bits/hit
	- \rightarrow 2.7 Gbps/chip
- But need low latency
	- need to account for hit rate and trigger rate fluctuations
	- **5 Gbps/chip**

for inner barrel layer

huegging@physik.uni-bonn.de

Pixel structure Dose (MGy) Fluence (1MeV neq 10¹⁴ cm-2) Inner Barrel 7.8 134.6 4 th Barrel 0.43 9.4 1st Inner ring 17.0 Last inner ring 1.13 16.1 1st Outer ring 0.44 8.2

from R. Bates, Vertex 2015

Assumes data on a quad multiplexed together

ATLAS HV-MAPS Workshop Heidelberg - 08-June-2015 3

Requirements of ITk pixel modules: Power and Material

- Power budget for ITk modules:
	- inner layers: 0.7 W/cm² for chip and ~0.3W/cm² for sensor
	- outer layers: 0.5 W/cm² for chip and ~0.2W/cm² for sensor
- Material budget for ITk modules:
	- for IBL we achieved: \sim 0.6% X/X₀
	- for inner ITk layers: 0.5% X/X₀
	- $-$ outer layers, esp. $5th$ or $6th$ pixel layer could be relaxed: ~0.6 – 0.7% X/X_0

- An extended pixel system requires low cost pixel modules
- Assumed here a 6th pixel layer
	- $-$ 5 pixel layers area = 14 m²

from R. Bates, Vertex 2015

Module testing and qualification

- Scale of the extended pixel system requires high production and testing throughput:
	- testability of the modules is an important requirement for the design!
	- modules must be robust and easy to handle before loading
	- need well defined interface for testing \rightarrow need a test connector
	- handling and protection frame
	- robust shipping frame
	- integration of automated test and tuning routines in the electronics/chips

Module concepts

- module concepts don't differ so much for hybrid, monolithic or CCPD approach:
	- all need a kind of a flex hybrid for the passive components and the interface to the outer world
	- monolithic and hybrid are basically the same
- a TSV technology could help to make the module more robust, e.g. no wire bonds
- for CCPD other configurations are necessary:
	- chip size could be much smaller than sensor sizes
	- connection of both chips to the flex difficult due to face to face orientation

Gluing vs. bump bonding

Gluing is a potentially cheaper hybridization technique for charge coupled devices (CCPD):

- But there are things to be considered:
	- procedure for a mass production must be developed and tested
	- cost reduction is probably not so big because only bump deposition and UBM can be omitted \rightarrow assembly effort is roughly the same
	- still some conductive connections for power and data transmission are needed \rightarrow not easy for same sized chip and sensor assemblies.
	- HV voltage connection maybe needed on sensor backside
- pure monolithic devices are obviously the best option!

Cooling issues

- Static cooling requirements are clear but there is still an uncertainty:
	- thermal runaway effects are a potential risk \rightarrow we need the sensor power dissipation with fluence as input for the TFoM requirement of the cooling system
	- I expect that HR CMOS behaves similar as standard planar sensor silicon in terms of leakage current generation
	- A bit more unclear for LR or EPI materials and how the electronics affects all this?
	- This must be addressed for the CMOS sensors basically now!

Powering issues

- It is clear that for HL-LHC inner tracking detectors a usual direct powering scheme will not work!
	- service material budget in the active volume will be too high
	- we need a reduction of about a factor 5 to 10 which can only be achieved by DC-DC power conversion of SP concepts
- Both concepts have severe impact on the module design:
	- integration of regulators on chip and/or on module level
	- bypass and control schemes needed esp. for SP
	- data readout requirements (AC coupling etc,)
- Need to be addressed for CMOS now as well!

ATLAS Inner Det. Material Distribution

Conclusions

- Module design for the ITk pixel detector is constraints by many external factors beyond radiation levels, data rates and readout speed:
	- magnitude of module production requires a good testability, robustness and disfavors a large variation of module types
	- cooling, powering and loading requirements are important to understand inside the whole system
- For monolithic CMOS detectors many things are similar as for hybrid pixel modules:
	- benefit from solutions being developed now for hybrid by just copying them
	- but in the end all these issues must be addressed as well in time!
- For charge coupled CMOS detectors things could be quite different depending on the chosen option:
	- this may complicate life because one have to develop own solutions

BACKUP

Modules of the IBL

huegging@physik.uni-bonn.de ATLAS HV-MAPS Workshop Heidelberg - 08-June-2015 13

Basic Requirements of ITk pixel modules

- **Silicon damage (1 MeV) fluences** used to model Pixel and SCT leakage currents and depletion voltages, which allow us to anticipate detector performance over its lifetime, including S/N estimates, and required cooling performance
- **Ionizing dose** measurements important for predicting frontend chip performance
- **Charged particle fluences** allow us to estimate occupancies
- **Radio-activation** estimates can dictate procedures for cavern access and detector installation and maintenance

