

CLIC module

Thermal and mechanical test results of TO#1

Team

Daskalaki Elena Duquenne Mathieu Rude Vivien Vamvakas Alex Xydou Anastasia Zelios Athanasios

Module review, June 22nd 2015

Elena Daskalaki, BE-RF-MK

Contents

- CLIC two-beam module
- Objectives
- Theoretical analysis
- FEA simulator
- Preliminary tests
- Duty cycles
- Results
- Transients
- Results
- Conclusions
- Open issues

CLIC two-beam module

Mock-up of a real module where power dissipation is simulated by electrical heaters

CLIC two-beam module

2011 - 2015

- One module T0-1
- First attempt to study the thermo-mechanical behaviour of CLIC (Phase-I)

2016 - ...

- Module array: Three modules T0-1, T0-2, T1
- Extension of experimental program (Phase-II)

Objectives

1. Study the effect of:

- Power
- Water flow
- Air speed
- Ambient temperature

on temperature and displacement

- 2. Simulate CLIC duty cycles
- 3. Study the dynamic response of CLIC components
- 4. Develop FEA simulator for module T0 in steady-state

Theoretical analysis

Theoretical analysis

Time constant

- Speed of system response excited by a step input
- Time to reach 62.3% of final state

FEA Simulator

$\overline{\mathcal{O}}$		
	1a	Main Beam Girder
	1b	Drive Beam Girder
	2	SAS
	3	Compact Load
	4	PETS Unit
	5	DBQ
	6	RF network
	7	Vacuum Network
	8	Cooling system SAS
	9	Cooling system PETS

A. Xydou, A. Vamvakas. G. Riddone, E. Daskalaki, "Themo-mechanical tests for the CLIC two-beam module study"

FEA Simulator

• Heaters used in the thermal tests have been modelled in the simulation

COMPONENTS	NOMINAL POWER (W)
SAS	820
PETS	110
CL	150
DBQ	150

Preliminary tests

CTED	T _{amb} (°C)	v _{air} (m/s)						
SILF			SAS	AS Load	PETS	RFN Load	DBQ	T _{i,water} (°C)
	20	0.3	0	0	0	0	0	25
	20	0.4	0	0	0	0	0	25
0	20	0.5	0	0	0	0	0	25
0	20	0.6	0	0	0	0	0	25
	20	0.7	0	0	0	0	0	25
	20	0.8	0	0	0	0	0	25
	20	0.3	0	0	0	0	0	25
1	30	0.3	0	0	0	0	0	25
	40	0.3	0	0	0	0	0	25
	20/40	0.4	50	50	0	0	0	25
Э	20/40	0.4	100	100	0	0	0	25
Z	20/40	0.8	50	50	0	0	0	25
	20/40	0.8	100	100	0	0	0	25
	20/40	0.4	0	0	50	50	5	25
Э	20/40	0.4	0	0	100	100	10	25
3	20/40	0.8	0	0	50	50	5	25
	20/40	0.8	0	0	100	100	10	25
	20/40	0.4	50	50	50	50	5	25
1	20/40	0.4	100	100	100	100	10	25
4	20/40	0.8	50	50	50	50	5	25
	20/40	0.8	100	100	100	100	10	25

- Final state depends on power, ambient temperature and water flow.
- No dependence on air speed
- The temperature rise is linear to the applied power

F. Rossi, "Thermo-mechanical tests", Review of CLIC Two-Beam Module lab program, 6 November 2013

Duty cycles

		INPUT									
Mode	#							с			
			T _{amb} (°C)	v _{air} (m/s)	SAS	AS Load	PETS	RFN Load	DBQ	T _{i,water} (°C)	(m ³ /h)
Nominal	DBQ only	20/40	0.7	0	0	0	0	150	25	0.311	
operation	Unloaded	20/40	0.7	820	178	220	178	150	25	0.311	
mode	Loaded	20/40	0.7	683	137	220	178	150	25	0.311	
	Loaded	20/40	0.7	683	137	220	178	150	25	0.311	
Failure mode	SAS breakdown	20/40	0.7	0	27.4	220	178	150	25	0.311	
breakdown	PETS off	20/40	0.7	0	27.4	55	0	150	25	0.311	
	Loaded	20/40	0.7	683	137	220	178	150	25	0.311	
	Loaded	20/40	0.7	683	137	220	178	150	25	0.311	
Failure mode PETS	PETS breakdown	20/40	0.7	683	137	55	0	150	25	0.311	
breakdown	SAS off	20/40	0.7	0	27.4	55	0	150	25	0.311	
	Loaded	20/40	0.7	683	137	220	178	150	25	0.311	

Temperature and position of all components were measured in steady-states

E. Daskalaki, A. Vamvakas, A. Xydou, "Nominal operation mode: Temperature results"

M. Duquenne, V. Rude, A. Xydou, "Nominal operation mode: Displacement results"

Steady-state temperature in nominal operation mode: Comparison between experiment and simulator

		DBQ only			Unloaded			Loaded	
	Experiment	Simulation	Diff.	Experiment	Simulation	Diff.	Experiment	Simulation	Diff.
SAS#1	23.7	24.7	1.0	29.5	31.1	1.6	29.0	30.0	1.0
SAS#2	24.3	24.7	0.4	32.2	32.4	0.2	31.5	31.1	-0.4
SAS#3	24.4	24.7	0.3	32.2	32.2	0.0	31.5	30.9	-0.6
SAS#4	24.2	24.7	0.5	32.2	32.5	0.3	31.5	31.2	-0.3
PETSu#1	22.7	24.0	1.3	25.9	28.0	2.1	26.4	28.0	1.6
PETSu#2	23.2	23.9	0.7	29.4	29.9	0.5	30.1	29.9	-0.2
DBQ#1	37.6	39.3	1.7	34.4	32.2	2.2	33.2	31.8	1.4
DBQ#2	36.1	38.4	2.3	33.6	33.9	-0.3	31.8	33.6	-1.8

• The FEA simulator predicts effectively the experimental temperature response

Results: Temperature

Nominal operation mode: Comparison between experiment and theoretical expectation

	T _{water,in} (°C)	T _{water,out} (°C)	Flow (m³/h)	T _{amb} (°C)	T _{comp} (°C)	Q _{water} (W)	Q _{air} (W)	Q _{tot,theory} (W)	Q _{tot,exper} (W)
SAS#1	24.6	32.3	0.07	20	31.5	628	92	720	817
SAS#2	24.6	33.7	0.07	20	33.6	733	109	841	817
SAS#3	25.0	34.8	0.06	20	34.4	724	115	839	817
SAS#4	25.0	34.3	0.07	20	33.8	718	110	829	817
SAS total								3228	3280
PETS	24.7	30.1	0.04	20	28.6	255	69	324	420
								L	

$$\dot{Q}_{water} = \dot{m}c_p (T_{water,out} - T_{water,in})$$

 $\dot{Q}_{air} = h(T_{comp} - T_{amb})A$

- Theoretical analysis matches well with experimental results
- Better match in the case of SAS

Results: Displacement

Results: Displacement

Phase 1: Temperature

Dynamic **thermal** response as a function of:

- Power applied
- Water flow
- Ambient conditions

Phase 2: Displacement

Dynamic **mechanical** response and its correspondence to the thermal dynamics

Phase 1: Temperature

• Three cases of applied **power**, **water flow** and **ambient temperature** in all possible combinations

Power (W)	Water flow (m³/h)	Ambient temperature (°C)
290	0.040	20
820	0.068	30
910	0.090	40

Procedure

Phase 2: Displacement

- **Case 1:** Follow one point of an AS
 - o More frequent measurement of point's position
 - o Investigate the dynamics of a single point accurately
 - o Not adequate for the determination of AS axis movement
- Case 2: Follow one AS (4 points)
 - o Determine the AS axis movement
 - Investigate axis dynamics based on point-to-point dynamics

Experiment conditions

- Power: 820 W
- Water flow: 0.04 m³/h
- Ambient temperature: 20 °C

Results: Temperature

TC of SAS versus water flow for each power and ambient temperature case during temperature rise (upper graph) and fall (lower graph)

Results: Temperature

Comparison of SAS temperature profile: Experimental vs theoretical data

Results: Displacement

Time constants (min)

 Δx
 ΔT

 Rise
 7.28
 7.52

 Fall
 7.87
 7.33

- Movement and temperature dynamics are the same
- Time constants can be calculated as in the case of temperature

Results: Displacement

Results: SAS breakdown

Extrapolate results to the estimation of displacement during a SAS breakdown

Conclusions

Steady-state response

- Final state depends on power, ambient temperature and water flow.
- No dependence on air speed
- Temperature results match well with theoretical expectation especially in SAS.
- Displacement of \approx 50 µm measured in DBQ
- Observed displacements of 10 μm, close to the uncertainty of the measurement
- Higher deviation of experimental and theoretical results observed in Drive Beam

FEA simulator

- The first version of the FEA simulator can predict well the temperature and displacements in steady-state especially for the Main Beam
- Deviation of the displacements on the Drive Beam:
 - o Temperature deviation between the experiment and the simulator
 - Stiffness of springs representing actuators stiffness

Conclusions

Transient response

- Dynamic response depends highly on water flow.
- Thermal time constant of SAS ranges between 4-11 minutes.
- Thermal transient response can be modelled as a first order differential equation.
- Displacement dynamics match well with the thermal ones.
- Temperature measurement (easy and fast process) could be used as an indicator of AS displacement (complex and time consuming process).
- The time constant of the components could be controlled as desired through regulation of the water flow.

Open issues

- DBQ not cooled
- DBQ and PETS heated simultaneously by common heater
- PETS testing prone to inaccuracies due to
 - o Their proximity with DBQ
 - The cooling channel which connects the two PETS units is heated by intermediate DBQ
- SAS cannot be heated independently

- Limited accuracy in DB thermo-mechanical testing
- Reduced heating flexibility

To be addressed in the next experimental program

Thank you for your attention