

CLIC module

Experimental program for module array

Module review, June 22nd 2015

Elena Daskalaki, BE-RF-MK

Contents

- Introduction
- Objectives
- Experimental program
- Planning

Introduction

2011 - 2015

- One module T0-1
- First attempt to study the thermomechanical behaviour of CLIC (Phase-I)

2016 - ...

- Module array: Three modules T0-1, T0-2, T1
- Extension of experimental program (Phase-II)

Active pre-alignment

• Fiducialization

• Alignment girders and components

Observation

Thermo-mechanical behaviour under operating conditions Action

Translate to real CLIC

Objectives

Ultimate objective: Learn how to...

Active pre-alignment

Test	Description				
Fiducialization of components and supports for TO#2 and T1	 Adjustment and test of new V-shaped supports Installation of fiducials and sensors interfaces Magnetic measurements for DBQ 				
Alignment of components on their supports	 Measurements and adjustments Preparation of the 2 standard DBQ supports : assembly & validation Preparation of the 2 non-standard DBQ supports : design, assembly & validation 				
Alignment of girders					
Installation of sensors	 Calibration & test Validation in situ Installation of cables & acquisition system Analysis of data 				
Active algorithm	ImplementationValidation				

Observation

Test	What we do	What we learn
Articulation point	 Shocks, loads, constraints T^o 	Investigate stability over time
Thermo- mechanical test without vacuum	Nominal operation modeTransients	 Comparative assessment T0-1, T0-2 Study T1 Modules interconnection Comparative assessment of cradle sensors MB-DB dependence
Vacuumtests	Apply vacuum	Displacement of girdersRollDisplacement of cradles
Thermo- mechanical test under vacuum	VacuumNominal operation modeTransients	 Steady-state and time constants under vacuum Modules interconnection MB-DB dependence
Failure modes	SAS breakdownPETS breakdown	 Temperature and displacement during breakdown Maximum acceptable duration for breakdown
Vibration tests	Add accelerometers	Sources of vibrationDangerous eigen-frequencies

Action

Test	Description
Inverse alignment	Pre-align in negative displacements and test if under nominal operation the components align at correct zero position
Regulate breakdown displacements	Time constant depends on water flowDevelop control algorithm to regulate water flow towards minimization of displacement
Displacement prediction	 Can we predict displacement from temperature using a simple mathematical model? Development of real-time displacement diagnostic Comparison with simulator How many temperature inputs do we need?
CTF3/CLIC	Relate module to CTF3 CLEX Dogleg

Meet CLIC tolerances?

Finalize measurement methods

Finalize procedures

Planning

ID	0	Task Mode	Task Name	Duration	Start	Finish	Jarter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 1st Qu Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
1			Module installation	176 days	Mon 01/06/	/15Sun 31/01/16	Module installation
2		-	Active pre-alignment	77 days	Thu 01/10/:	15 Fri 15/01/16	Active pre-alignment
3		-	Fiducialization components and support T0#2, T1	25 days	Thu 01/10/:	15 Wed 04/11/15	Fiducialization components and support T0#2, T1
7			Alignment of components on their suports	26 days	Thu 05/11/:	15 Thu 10/12/15	Alignment of components on their suports
11		-	Alignment of girders	2 days	Fri 11/12/1	5 Mon 14/12/15	Alignment of girders
13		-	Installation of sensors	14 days	Tue 15/12/:	15 Fri 01/01/16	Installation of sensors
18		-	Active algorithm	10 days	Mon 04/01,	/16Fri 15/01/16	Active algorithm 🗖
20			Observation	123 days	Mon 18/01,	/16Wed 06/07/16	Observation
21			Articulation point	30 days	Mon 18/01,	/16Fri 26/02/16	Articulation point
24		-	Thermo-mechanical test without vacuum	35 days	Mon 29/02/	/16Fri 15/04/16	Thermo-mechanical test without vacuum
32		-	Vacuum tests	5 days	Mon 18/04/	/16Fri 22/04/16	Vacuum tests
33		-	Thermo-mechanical test under vacuum	35 days	Mon 25/04/	/16Fri 10/06/16	Thermo-mechanical test under vacuum
41		-	Failure modes	18 days	Mon 13/06/	/16Wed 06/07/16	Failure modes
47		-	Vibration tests	5 days	Mon 25/04/	/16Fri 29/04/16	Vibration tests
48			Action	100 days	Thu 07/07/	16 Wed 23/11/16	Action
49			Inverse alignment	30 days	Thu 07/07/:	16 Wed 17/08/16	Inverse alignment
51			Regulate breakdown displacements	20 days	Thu 18/08/:	16 Wed 14/09/16	Regulate breakdown displacements
52		-	Displacement prediction	40 days	Thu 15/09/:	16 Wed 09/11/16	Displacement prediction
53			Relate to CTF3/CLIC	10 days	Thu 10/11/:	16 Wed 23/11/16	Relate to CTF3/CLIC 🎽
54			Processing - presentations - conclusions	40 days	Thu 24/11/:	16 Wed 18/01/17	Processing - presentations - conclusions

Thank you for your attention

More details

Themo-mechanical tests

Test Time (days) Measurement Steady-state 10 Nominal temperatures only T 2 Zero-DBQ only-Zero T, M 2 Zero-Unloaded-Zero T, M 2 Zero-Loaded-Zero T, M 2 T, M Unloaded-Loaded-Unloaded 2 Transients 15 Т f₁, P₁, 20°C 1 f₂, P₁, 20°C T 1 f₃, P₁, 20°C Т 1 f₁, P₂, 20°C T 1 f₂, P₂, 20°C T 1 f₃, P₂, 20°C Т 1 f₁, P₃, 20°C Т 1 f₂, P₃, 20°C Т 1 T f₃, P₃, 20°C 1 f₁, P₁, 20°C T, M 3 f₃, P₁, 20°C T, M 3 Failure modes 8 T SAS/PETS breakdown 2 T, M Loaded-SAS breakdown-Loaded 2 SAS breakdown-PETS off-SAS breakdown T, M 2 T, M Loaded-PETS off-Loaded 2

More details

For type 0 & type 1 (RF components)

- New support for the sensors, directly fixed on the girder and no more on the cradle
 - Design of a specific support, manufacturing & validation on the girder allowing a repeatable position after a change of T^o
 - To be integrated on TBTM
 - Adaptation of the design on the cradle
- DB quad support + 5 DOF motorization
 - Assembly of 2 supports
 - Design of 2 additional supports
 - Motorization & validation
- Development of an active pre-alignment algorithm
 - Change the acquisition system
 - Add sensors
 - Solve rigid links between girders
- validation of the "inverse alignment strategy"

Regulate breakdown displacement

