TBM mechanical test-bench (TBM-MTB)

M. Aicheler Module review 22.06.2015

Current situation with LabModule:

- 1. LabModule array is (almost) frozen design
- 2. Test programme is extensive and setup should not change severly during testing (next 18 months)
- 3. LabModule array is very complex and cramped object
- 4. After test campaign LabModule array could partially be salvaged or could stay as a showcase (decision to be taken yet)
- 5. Significant amount of spare parts of support system components are available

→ Need for a «simple» playground for trying out innovations as they come (no precise environmental control needed)

Spare parts (not used in LabModule)

- Girders
 - 1x Epucret (removable v-supports, can double for MB and DB)
 - 2x Boostec DB
 - 1x Boostec MB T0
 - 1x MB T1 no specs
- Actuators
 - 4x full sets (2x VLA-2 & 1x RLA-2 per set)
- Supporting system
 - 3x 'short' design
 - 1x 'long' design (different design, same interfaces)
- No extremity pieces

CLEX girder pre-assembly room

Wire station 1

Bore holes -

M. Aicheler

Rudimentary climate control

Support station

Wire station 2 (not visible)

- Existing wire stations
- Existing boreholes for fixing on the ground
- Existing crates for actuator control hardware
- Rudimentary climate control

M. Aicheler

Case of the supports:

- ✓ Girder:
 - Straightness of the V-shaped supports:
 - Boostec: radius of the cylinder containing the center of the V-shaped support : 6µm and 4µm
 - Micro-Contrôle: radius of the cylinder containing the center of the Vshaped support: 7.5 μ m and 5.5 μ m
- \checkmark Girder + cradle:
 - Total length above 2 m
 - Measurements out of the range of the CMM: accuracy $\sim 15 \ \mu m$, some faults detected.
 - Different types of fiducials implied different types of measuring devices sometimes outside the range of measurement.
 - Position of the cradle w.r.t. girder not stable along time •

✓ Articulation point:

- Function ok
- Stability along time ??
 - Shocks, loads, constraints
 - T°

Module Review 22.06.2015

TBM-MBT could offer a

design

possibility to validate a new

Vacuum tests and other constraints

- ✓ Displacement of cradles versus girders
- ✓ Non repeatability
- ✓ Consequences:
 - Fiducialisation between cradle and girder lost: no possibility to perform again absolute measurements ZTS vvu Kosice has copied this solution for CLEX → same problem for CLEX → no possibility to align the components in an absolute way
 - Link girder/cradle lost
- \checkmark Independence of girders

	<u>Linac</u>	Sans contrainte	Connexion TANK	Connexion Waveguide	Connexion Vacuum Network	Vide	TOTAL
Déplacement Radial	DB	-	-	3 µrađ	-	3 µrad	6 µrad
	MB	-	-	10 µrad	-	10 µrad	20 µrađ
Déplacement Vertical	DB	-	1 µrađ	-	-	-	1 µrad
	MB	-	3 µrad	-		9 µrađ	12 µrad
Roulis	DB	-	1 µrad	14 µrad	-	1 µrad	15 µrad
	MB	-	-	15 µrad	-	???	???

TBM-MBT could offer a possibility to validate a new design

TBM-MBT could offer a

validation on a simple model

Need to develop an inclinometer that is absolute:

- \checkmark To avoid 2 wires per beam, 4 wires per module, as in lab and CLEX
- with real dimensions and sensor setup \checkmark Difficulty: absolute measurement combined with kinematic interface
- \checkmark Development of a special measurement bench and special tool, to be tested on TBTM, under validation in our metrological lab.

 \checkmark Next step: development of a rad hard version (manufacturers are not interested to do this \rightarrow in-house development) Module Review 22.06.2015

Adjustable V-Support Solutions and further evolution steps for MB can be tried out easily on the Epucret girders...

... to be evaluated with simple precision copper cylinders (as AS mockups)

Summary:

Possible Tests:

- 1. Articulation point new design, implementation and longterm behaviour + robustness after transport and reinstallation
- 2. New craddle design and implemenation (goes together with 1.)
- 3. Absolute Inclinometer tests (potentially very crowded lab module for implementation)
- 4. Adjustable V-supports and further evolution steps in MB conditions
- 5. Transportation test, e.g. taking Epucret girder with Adj. V-supports to Metrology and back
- 6. Potentially any future girder / support system design evolution

Other:

- 1. Almost entire hardware already available and ready to be installed
- 2. Environment former CLEX assembly -> ready for installation
- 3. Minimal material budget for getting system up and running
- 4. Simple Benchmark for various systems also used in CLEX and LabModule

To be filled again...

Thanks for your attention!

M. Aicheler