PLACET

User experiences with PLACET and examples of use for the Drive Beam

International Workshop on X-Band Structures and Beam Dynamics,

The Cockroft Institute

Erik Adli, University of Oslo and CERN, December 3rd 2008

Outline

What is PLACET?

Personal experiences with the Drive Beam work

- Example / getting started scripts [put on CVS for future reference]:
 - TCL: Create a sliced beam for a FODO lattice with PETS
 - Octave: lattice manipulation and beam-based alignment using PLACET octave

What is PLACET?

General tracking code for non-circular machines

- Supports fast tracking of particle beams or sliced beams (realistic beams with large number of particles can be created and simulated easy)
- Can be used for practically all parts of the CLIC machine with the exception of the damping rings and injectors (no space-charge,v=c).
 Especially strong and fast support for wake fields in accelerating and decelerating structures
 - tracking through entire CLIC linac: takes few seconds with baseline setup
- Powerful build-in features for analyzing effects of misalignment and alignment/feedback schemes, automating simulation and generation of statistics for a large number of random machines
- Code used by a large part of CLIC beam dynamics team + collaborators around the world
- Command interpreter is Tcl/Tk-based + additional Octave interface

Code and development

Written by D. Schulte (CERN) + major update by code keeper up to April 2008: A. Latina (FNAL)

https://savannah.cern.ch/projects/placet/

- Current code keeper B. Dalena (CERN)
- However, all interested collaborators are welcome to join as co-developers and contribute directly to the cvsrepository
 - Typically: if you have implemented a nice PLACET update, element or algorithm you think could be of general use, please consider adding it to the repository (ask to be added to "placetdevelopers" mailing list)

Personal start-up experiences

- Interpreter: TCL
 - I was almost blank to TCL, but much better to start with than an own-defined language like in MADX (TCL: powerful language, lot's of online help)
- Documentation: was too poor to start working alone, good examples and/or help from experts needed
 - Recently: documentation has improved a lot
 - And: a lot of good example scripts are now in CVS
- However, once I did get my hands on the interpreter and the basics: found the code very efficient

Placet-octave

- Last year a new interface added to PLACET: Octave interface, created by A. Latina (now at FNAL)
- Octave: "open source MATLAB clone" → if you know MATLAB you also know Octave
- Lattice and beam can be manipulated directly with Octave commands
 [O.M. more compact code than C for e.g. matrix-operations]
 - E.g. anywhere in your lattice definition you can insert Octave parts
- I find the Octave interface both extremely clean and powerful [I was a hard-core MATLAB user before], and it allows new and intuitive ways to perform lattice manipulation – a GREAT addition to PLACET
- Placet-octave seems to have reached a mature stage (very well working and robust) however, it covers only a subset of Tcl commands

Example script

- Example shows: typical use of PLACET using both Tcl interpreter and Octave interpreter, by using a TBL-like lattice
 - Sliced Drive Beam beam
 - FODO cell with PETS
 - NB: if main linac structures shall be used, please refer to examples with Main Linac please see "example1.tcl" etc. in the same directory and this example (beams and wake fields defined in a different way for Main Linac structures)
 - "Interactive part" using placet-octave
 - Beam-based alignment / dispersion calculations

Example script

Example script: minimal self-consistent Drive Beam decelerator (code is divided into parts and well-commented for your reference)

Tcl-interface:

- Part 1: Define the beam
- Part 2: Define lattice component parameters (e.g. Cavities)
- Part 3: Define the lattice
- Part 4: Track
- Part 5: Data processing

Octave-interface:

Part 6: Beam-based alignment and lattice manipulation

This last part will be shown "interactively" – to show the ease of use of the Octave interface. For the rest: please download and read the (well-commented) example

(max 5. minutes demo session)

Conclusions

- My opinion: PLACET has classical "power versus learning curve" issue
- For using PLACET most efficiently one need to know two languages (TCL and Octave)
 - But: BIG advantage that languages are main stream computer languages, with well-defined behaviour and lot's of online help (unlike e.g. MAD scripting language)
 - Some many purposes: only the Tcl interface will be of needed
 - For code modification: C and basic C++ skills needed
- To get started with PLACET: I would advice to start with a simple example from the example folder, understand it, and build-on from there

Some examples to get started

I recommend the following examples for people who wants to start using PLACET:

For a minimal generic beam generation and tracking example w/o wake fields:

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/placet-development/examples/Placet_BC2_Example/

Tracking through full CLIC linac (30 GHz), including wake fields:

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/placet-development/examples/clic/example1.tcl

For example of Octave-interface and Beam-Based Alignment :

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/placet-development/examples/clic/decelerator.tcl

PLACET contact point

PLACET download:

https://savannah.cern.ch/projects/placet/

The current PLACET code keeper (from July 2008): Barbara Dalena (CERN)

Barbara.Dalena@cern.ch

- general questions about PLACET (installation etc.) can be sent here

For questions about the example shown and related issues please feel free to also contact me:

Erik.Adli@cern.ch