Status of High Gradient Tests of Normal Conducting Single-Cell Structures

Valery Dolgashev, Sami Tantawi (SLAC) Yasuo Higashi (KEK)

X-Band RF Structure and Beam Dynamics Workshop, 1-4 December, 2008 at The Cockroft Institute, UK

Outline

- Introduction
- Strategy
- Structures
- Results

This work is made possible by the efforts of SLAC's

- A. Yeremian, J. Lewandowski of Accelerator Technology Research
- C. Pearson, J. Eichner, D. Martin, C. Yoneda, L. Laurent, R. Talley, J. Zelinski and staff *of Klystron Lab*.
- Z. Li, Advanced Computation

In collaboration with :

- R. Marsh, *MIT*
- B. Spataro, INFN, Frascati

Single Cell Accelerator Structures

Goals

• Study rf breakdown in *practical* accelerating structures: dependence on circuit parameters, materials, cell shapes and surface processing techniques

Difficulties

• Full scale structures are long, complex, and expensive

Solution

- Single cell Traveling wave (TW) and single cell standing wave (SW) structures with properties close to that of full scale structures
- Reusable couplers

We want to predict breakdown behavior for practical structures

Reusable coupler: TM_{01} Mode Launcher

Pearson's RF flange

Cutaway view of the mode launcher

Two mode launchers

Surface electric fields in the mode launcher E_{max} = 49 MV/m for 100 MW

S. Tantawi, C. Nantista

Strategy

Geometry

- Stored energy, 1-cell vs. 3-cell
- Electric field for same magnetic field
- Choke 1 mm
- Choke 4 mm
- PBG
- Choke WR90 coupler
- Shunt impedance, iris size, etc.
- ...

Materials

- CuZr
- CuCr
- CuAg
- Molybdenum
- • •

Coatings

- TiN
- ...

High Power Tests of Single Cell Standing Wave Structures

Tested

- •Low shunt impedance, *a/lambda* = 0.215, *1C-SW-A5.65-T4.6-Cu*, 5 tested
- •Low shunt impedance, TiN coated, 1C-SW-A5.65-T4.6-Cu-TiN, 1 tested
- •Three high gradient cells, low shunt impedance, *3C-SW-A5.65-T4.6-Cu*, 2 tested •High shunt impedance, elliptical iris, *a/lambda* = 0.143, *1C-SW-A3.75-T2.6-Cu*,

1 tested

- •High shunt impedance, round iris, *a/lambda* = 0.143, *1C-SW-A3.75-T1.66-Cu*, 1 tested
- •Choke with 1mm gap in high gradient cell, *1C-SW-A5.65-T4.6-Choke-Cu*, 2 tested •Low shunt impedance, made of CuZr, *1C-SW-A5.65-T4.6-CuZr*, 1 tested
- •Low shunt impedance, made of CuCr, 1C-SW-A5.65-T4.6-CuCr, 1 tested

Now 15th test under way, highest shunt impedance copper structure *1C-SW-A2.75-T2.0-Cu-SLAC-#1*

Next experiments, as for 30th November 2008

Reproducibility tests:

High shunt impedance, elliptical iris, *1C-SW-A3.75-T2.6-Cu* High shunt impedance, round iris, *1C-SW-A3.75-T1.66-Cu* Low shunt impedance, made of CuZr, *1C-SW-A5.65-T4.6-CuZr* Three high gradient cells, low shunt impedance, *3C-SW-A5.65-T4.6-Cu*

Geometry tests:

Photonic-Band-Gap in high gradient cell, *1C-SW-A5.65-T4.6-Cu-PBG* Three cells, WR90 1mm gap choke coupling to power source, *3C-SW-A5.65-T4.6-Cu-WR90*

High shunt impedance, choke with 4mm gap, *1C-SW-A3.75-T2.6-Choke-Cu* Choke with 4mm gap in high gradient cell, *1C-SW-A5.65-T4.6-Choke-Cu*

Materials:

High shunt impedance, elliptical iris, 6N copper, *1C-SW-A3.75-T2.6-6N-Cu* High shunt impedance, made of CuZr, *1C-SW-A3.75-T2.6-CuZr* High shunt impedance, made of CuAg, *1C-SW-A3.75-T2.6-CuAg* Low shunt impedance, made of CuAg, *1C-SW-A5.65-T4.6-CuAg*

Parameters of *periodic* structures, Eacc=100 MV/m

	A2.75-			A5.65-T4.6-	A5.65-	
Name	T2.0- Cu	A3.75-T1.66- Cu	A3.75-T2.6- Cu	Choke- Cu	T4.6- Cu	T53VG3
Stored Energy [J]	0.153	0.189	0.189	0.333	0.298	0.09
Q-value	8.59E+03	8.82E+03	8.56E+03	7.53E+03	8.38E+03	6.77E+03
Shunt Impedance [MOhm/m]	102.891	85.189	82.598	41.34	51.359	91.772
Max. Mag. Field [A/m]	2.90E+05	3.14E+05	3.25E+05	4.20E+05	4.18E+05	2.75E+05
Max. Electric Field [MV/m]	203.1	266	202.9	212	211.4	217.5
Losses in one cell [MW]	1.275	1.54	1.588	3.173	2.554	0.953
a [mm]	2.75	3.75	3.75	5.65	5.65	3.885
a/lambda	0.105	0.143	0.143	0.215	0.215	0.148
Hmax*Z0/Eacc	1.093	1.181	1.224	1.581	1.575	1.035
t [mm]	2	1.664	2.6	4.6	4.6	1.66
Iris ellipticity	1.385	0.998	1.692	1.478	1.478	1
Ph. advance/cell [deg.]	180	180	180	180	180	120

Single-Cell-SW-A5.65-T4.6-Cu

Low shunt impedance structures, $a/\lambda=0.215$

1C-SW-A5.65-T4.6-Cu

3C-SW-A5.65-T4.6-Cu

Solid Model: David Martin

High shunt impedance structures, $a/\lambda=0.143$

1C-SW-A3.75-T2.6-Cu

1C-SW-A3.75-T1.66-Cu

Solid Model: David Martin

Highest shunt impedance structure, $a/\lambda = 0.105$

1C-SW-A3.75-T2.6-Cu Solid Model: David Martin

Wakefield damping "ready" structures, a/ λ =0.215

Electrical design: Roark Marsh, MIT

1C-SW-A5.65-T4.6-Cu-Choke

1C-SW-A5.65-T4.6-Cu-PBG

Solid Models: David Martin

SLAC National Accelerator Lab, 05 Nov, 2008

Results

RF pulse profile: "shaped" pulse

Geometries

Gradient and pulse heating for 5 different single cell structures, *shaped* pulse (*flat* part: A5.65-T4.6-KEK-#1- 150 ns, A5.65-T4.6-Frascati-#2- 150 ns, A3.75-T2.6-Cu-SLAC-#1: 150 ns, A3.75-T1.66-Cu-KEK-#1 200 ns, A2.75-T2.0-Cu-SLAC-#1 200 ns)

Max(Integral_0^T(Ploss/Sqrt(T-t) dt)) [a.u.]

Pulse heating damage in copper structures

Grain boundary on iris of 1C-SW-A5.65-T4.6-Cu-KEK-#2

Grain boundary in high **magnetic** field area

Grain boundary in high **electric** field area *Lisa Laurent, 20 March 2008*

Cracks between grains and deformation of the grain on outside wall of 1C-SW-A5.65-T4.6-Cu-KEK-#2

Lisa Laurent, 20 March 2008

Pulsed Heating Experiments

Photograph of pulse heating sample Cu OFE 2 after rf processing

SEM image showing large amounts of copper has apparently erupted through the cracks.

SEM - Lisa Laurent

Choke Structure Results

1C-SW-A5.65-T4.6-Cu-Choke

1C-SW-A5.65-T4.6-Cu-Choke 10 MW input

Maximum magnetic field 628.5 kA/m (SLANS 627.5 kA/m)

Resonance at 11.42053 GHz $\beta = 1.03832$

(SLANS 11.424 GHz)

(SLANS 1.045)

Maximum electric field 289 MV/m ((SLANS 297.7 MV/m))

Over-coupled loaded Q Unloaded Q=7,933 (SLANS 7,933.5)

1C-SW-A5.65-T4.6-**Ch**-Cu-SLAC-#1

1C-SW-A5.65-T4.6-**Ch**-Cu-SLAC-#1

Two structures with chokes

Next choke structure: 1C-SW-A3.75-T2.6-Cu-4mm-Choke, 10 MW losses

Maximum magnetic field 604 kA/m (SLANS 602.065 kA/m)

Maximum electric field 347 MV/m (SLANS 350.85 MV/m)

V.A. Dolgashev, 18 September 2008

Copper alloys

CuZr and CuCr structures

1C-SW-A5.65-T4.6-CuZr-SLAC-#1

150 ns shaped pulse for 1C-SW-A5.65-T4.6 structures

First breakdown Rate [#/hour]

V.A. Dolgashev, 12 November 2008

1000 First breakdown Rate [#/hour] One-Cu-Frascati-#2 One-Cu-KEK-#2 100 One-CuCr-SLAC-#1 ● One-CuZr-SLAC-#1 ᠿ 10 ▼ Three–Cu–KEK–#1 Three-Cu-KEK-#2 1 0.1 0.01 60 80 100 120 **140**

Gradient [MV/m]

Max(Integral_0^T(Ploss/Sqrt(T-t) dt)) [a.u.]

First breakdown Rate [#/hour

1C-SW-A5.65-T4.6-CuZr-SLAC-#1, Lisa Laurent

1C-SW-A5.65-T4.6-CuZr-SLAC-#1, Lisa Laurent

1C-SW-A5.65-T4.6-CuZr-SLAC-#1, Lisa Laurent

1C-SW-A5.65-T4.6-CuZr-SLAC-#1, Lisa Laurent

Copper alloys

Clamped structure

SLAC National Accelerator Lab, 19 Nov 20

GUIGE TO THE

Summary

We have a test setup with short turn-around time that produces useful data. The stand started working January 2007 and now running15th structure, smallest iris, *1C-SW-A2.75-T2.0-Cu-SLAC-#1*.

More slides

Some Observations

- In all structures but one, coated with TiN and choke structure, *breakdown rate increases exponentially with either input power or pulse width*. For structure coated with TiN and the choke structure the pulse-width dependence is weak.
- There is no dramatic difference in breakdown rate for same electro-magnetic field and pulse width between single-cell and 3-cell structures. Same time, stored energy and input power ~2 times different.
- At certain field and pulse width the 3-cell structure shows obvious run-away behavior.
- All structures but one coated with TiN conditioned in few hours with few vacuum trips. During further operation, the vacuum trips were very rare, even at high breakdown rate. TiN structure took a week to condition. Choke structures took few days to condition.
- All structures had different amplitude of dark current (measured by Faraday cups) for the same field levels and pulse width. There was no obvious correlation between the dark current amplitude for the different structures and the breakdown rate.