

Scope of Work

- Layout and general concepts
- Complete module
- Directional couplers
- Hybrids
- Phase shifters
- · Phase shift motors etc
- Output cables
- End launch transitions
- Terminations / Balance loads
- Waveguides
- Factory Test

Layout

- Layout supplied courtesy of STFC
- We will feedback our models as the design progresses

Complete Module

Contains hybrid, phase shifter, directional couplers and end launch transitions.

Directional Couplers – waveguide based – model

- Dual directional built in termination.
- Based on coupled TEM line.
- Pair will be fitted in the waveguide after the phase shifter.
- Could not achieve 40 dB directivity with bought in component.

Directional Couplers – waveguide based – results

Coupling (40 dB desired)

Directivity (-40 dB to coupled i.e. -80 dB desired)

Hybrids

- Three types H plane coupling method.
- Power coupling level varies from 1/10th (first) to ½ (last).
- Three controls of coupling, match and isolation.
- Coupling width and length tunable.
- Capacitive E plane tuner.

Hybrids – three types according to coupling

½ power coupling – two shorting bars

Shorting bars control coupling region length(s)

Intermediate coupling (1/5 th shown) four bars.

Side walls have adjustable plates to control coupling region widths.

Low coupling (1/9, 1/10th). No side cut outs.

Hybrids – typical results

Electric field intensity

Coupling, return loss and isolation

Hybrid E plane tuner

- RF short circuited piston.
- Construction avoids threads in high field regions and sliding joints.
- Gives -1 to + 7 % reflection coefficient correction.
- Electric fields under control (139 V/mm for 100 kW)
- · Low current in short circuit.

Phase Shifter - model

- Guide width is made variable using an RF short circuited piston.
- This changes cut off frequency hence guide wavelength and phase.
- 180 degrees phase change possible over 400 mm long.
- Calculated return loss better than 26 dB.
- Generous clearances

Phase Shifter - results

Phase Shift Motors, Actuators and Controllers

Controllers

- McLennan preferred
- Combined motor / controller under investigation
- Incremental only
- RS485 suggested (can be daisy chained)

Motors

- Stepper type
- High resolution

Actuator

- Exact type to be agreed
- Origa preferred (good looks, compatible)

Output Cables

RFS cable chosen

- Type LCF78-50JFNA
- Low halogen jacket
- Foam dielectric, solid copper outer conductor
- Copper tube centre conductor
- Attenuation 0.0445 dB / m at 1.25 GHz
- Peak power 83 kW
- Simple connector assembly
- Minimum bend radius 250 mm (repeated)

Transitions

Stepped transition from 7/8 IEC to waveguide

End launcher optimised for 1.3 GHz

Termination Power Analysis

Half Ring Schematic Diagram

Assume cavities perfect match

Balance load powers depend on:

- Reflection from hybrids down the chain arising from contributions within each hybrid eg:
 - Transition
 - Phase shifter
 - Cable
 - Mistuning of isolation
- Reflections from waveguide bends

For each hybrid typical values are:

- 3 % reflection coefficient from the transition
- 5 % from the phase shifter at worst case setting
- Isolation 40 dB (this also will be the reflection coefficient for a good design) or 1 % reflection
- 5 % for the cable.

Termination Power Analysis

Termination Power Analysis – normal operation

EXCEL model using equations above

Termination Power Analysis – cavity open circuit

Terminations

- Coaxial 50 ohm
- Normal operation very low power ~ 2 Watts mean
- 10 kW peak rating in fault conditions, mean power 320 W for 100 ms
- · Oil filled have the best peak rating
- Will be mounted off the hybrid balance load port
- Example here is a Bird 8201 oil filled 500 W rated load.
- Connectors will be 7/8 IEC.
- Final type under investigation.

Waveguide and Flanges

- 60 metres of WG5Q ordered and received
- Material for flanges received, and prototype manufacture done
- Adhesive bonding of flanges under trial.
- · Gasket designed

