

FERMI@ELETTRA

A Single-Pass Free-Electron Laser User Facility Gerardo D'Auria

X-Band RF Structure & Beam Dynamics Workshop

Cockcroft Institute 1-4 December 2008

Construction of a single-pass FEL User Facility, in the soft X-ray region, based on the existing Normal Conducting S-band Linac.

- Beam energy 1.2 GeV (Phase I), 1.5 GeV (Phase II)
- 10-50 Hz pulse repetition rate, 1 e-bunch/pulse
- Seeded operation with Harmonic Generation
- Spectral range:
 - Phase I 100 (80) 40 (20) nm, single stage
 - Phase II 40 (20) 10 (5) nm, two stages
- Short sub-ps pulses ≤ 200 fs
- Flexible polarization, gap tuning, apple type undulators

- To greatly reduce the risks, and to meet the challenging time schedule of the FERMI project, we have chosen to use a proven technology (the 1.6 cell design developed by UCLA-SLAC-BNL).
- We established a collaboration with UCLA-PBPL group (J. Rosenzweig and al.) for the development of a state of the art photo-injector (RF Gun, emittance compensation solenoid and mounting apparatus)
- The solution proposed by UCLA and adopted on FERMI PC gun includes all the most recent improvements tested on the SPARC and FINDER projects.

- > Enhanced $0-\pi$ mode separation (12 MHz) for improved acceleration.
- > Removal of the RF tuners to reduce limits to the gun operating voltage (essentially arc free up to 11-12 MW).
- > Symmetrization of the gun full cell to limit both the dipole and quadrupole components of the RF field.
- > Flexible solenoid design, up to 5 KG in the "pancake" geometry.
- > Improved yoke design and multipole field correctors.
- > Monolithic copper piece cathode.
- > Improved pumping conductance for better RF and QE performance.

Gun Cavity

Cavity and solenoid

Courtesy of F. Cianciosi 11

Courtesy of M. Danailov

28 May 08: First photoelectron beam extraction! 180 pC by 50 µJ

Electron beam on the YAG screen with 80 MV/m RF gradient and I_{solenoid} = 110 A (the horizontal and vertical scales represent the number of the CCD pixel).

Emittance meter installation and measurements

July 4th set in place and after bake-out pressure is 3e-9 mbar

Emittance measurement: Q_{bunch}= 200 pC Energy = 5.2 MeV (115 MV/m) Emittance_y (@1.5 m) = 2.2 mm mrad Measurement campaign has been started to characterize the beam as a function of the solenoid and the gun phase.

We HV modulator development_PFN 50 Hz prototype

The system has been tested with good results and now is being used for component characterization.

Modulator schematics

Courtesy of C. Pappas 17

Single Cell Test Stand

PLC Crate

Assembling the Modulator

IGBT PCBs Installed

Courtesy of C. Pappas 19

Courtesy of T. Rohlev

- Contacts and documents exchange with SLAC. A proposal of a MoU has been prepared and is now under discussion.
- A strong connection with CERN and PSI has been established (both Labs have already signed a MoU with SLAC).
- The first klystron (scaled at 11.992 GHz) could be delivered in the second quarter of 2010.
- A request for Regional grants for the development of X-band componets has been presented on March 2008 and received approval in October 2008.

Units

GHz

MW

kW

μs Hz

dB

MHz %

kV

 $\mu A/V^{1.5}$

dB

Devemator		TInit			
Parameter		Om			
Max structure length	0.8	m			
Active structure length	0.6	m			
Working frequency	11.99204	GHz	Accelerating section		
Nominal structure voltage	20 (24 max.)	MV	oporating paramo	tore	
Phase	-120	deg	operating parame		
Repetition rate	10-50	Hz	*		
Electron pulse length (full width)	5-15	ps	*		
Phase stability (rms)	0.5	X-deg		FERMI	SLAC XL-4
Amplitude stability (rms)	0.5	%	Parameter	Value	
Klystron Operating parameters			RF Frequency	11.99204	11.424
			Peak RF power	≥ 50	50-70
			Average RF power	≥4.5	6.3
			RF pulse width (at – 3dB)	1.5	1.5
			Pulse repetition rate	60	60
			Gain at peak power*	≥ 50	52 @ 50 MW
			Bandwidth (at – 3 dB)	≥ 50	100
			Efficiency at saturation*	\geq 40	40
			Peak beam voltage (typ.) V _{beam} *	450	410 @ 50 MW 440 @ 70 MW
			Perveance (typ.)*	1.0-1.2	1.2
			Maximum output VSWR	1.15:1	1.15:1
			Fraction of RF power in 2 nd harmonic*	-20 max	~ 20

* More precise values to be discussed and agreed with SLAC.

Long. and Transv. wake functions used in tracking simulations

Tolerance budgets for MEDIUM and LONG case (L2)

