Multipacting & Dark Current Simulations For The CLIC HDX Structure

Zenghai Li

Volkan Akcelik, Arno Candel, Andreas Kabel, Kwok Ko, Lixin Ge, Lie-Quan Lee, Cho Ng, Greg Schussman, Liling Xiao

> Advanced Computations Department SLAC National Accelerator Laboratory

Presented at X-Band RF Structure & Beam Dynamics Workshop Cockcroft Institute, Dec 1-4, 2008

* Work supported by U.S. DOE ASCR, BES & HEP Divisions under contract DE-AC02-76SF00515

Outline

SLAC Parallel Finite Element Codes

Code Benchmarks & Examples

CLIC HDX Structure Simulation

SLAC/ACD Parallel Finite Element Codes

Omega3P	Complex Eigensolver
---------	---------------------

- **S3P** S-Parameter
- T3PTransients & Wakefields
- Track3PDark Current and Multipacting
- Pic3PSelf-Consistent Particle-In-Cell
- **Gun3P** Space-Charge Beam Optics
- **TEM3P** *Multi-Physics EM-Thermal-Mechanical*

Visualization of Mesh, Field and Particles

V3D

Key Strength of SLAC's EM Codes

- Tetrahedral Conformal Mesh w/ quadratic surface
- Higher-order Finite Elements p = 1-6
- Parallel Computing large memory & speedup

Development of Omega3P

Goal: High Fidelity simulation -> CAD drawing -> hardware fabrication - from single 2D cavity to a cryomodule of eight 3D ILC cavities An increase of 10⁵ in problem size with 10⁻⁵ accuracy over a decade

MP and DC Simulation Using *Track3P*

- Track3P
 - 3D parallel high-order finite-element particle tracking code for dark current and multipacting simulations
 - Traces particles in resonant modes <u>Omega3P</u> fields
 - Traces particles in steady state or transient fields $\underbrace{\text{S3P}}$ and $\underbrace{\text{T3P}}$ fields
 - Accommodates several emission models: thermal, field and secondary
 - Curved surfaces for accurate surface fields
- Benchmarked extensively
 - Rise time effects on dark current for an X-band 30-cell structure
 - Prediction of MP barriers in the KEK ICHIRO cavity

Omega3P, T3P, Track3P – High Gradient

HOM damping & Multipacting studies are needed for High Gradient Structures

MP Module In *Track3P*

- Analyze resonant conditions particle initiated at all surfaces and RF phases
- Calculate multipacting map using impact energy and SEY data
- Simulation procedure
 - Launch electrons on specified surfaces with different RF phase, energy and emission angle
 - Record impact position, energy and RF phase; generate secondary electrons and continue tracking
 - Determine "resonant" trajectories by consecutive impact phase and position
 - Calculate MP order (#RF cycles/impact) and MP type (#impacts /MP cycle) and MP level (impact energy, SEY)

Example of MP Particles

• Resonant trajectory ...

SRF Cavity

Coax with reflection

Dark Current Module In Track3P

- Particle generated by field and secondary emissions
 - Field Emission Fowler Nordheim

$$I(r,t) = 1.54 \times 10^{\left(-6+\frac{4.52}{\sqrt{\varphi}}\right)} \frac{\left(\beta E\right)^2}{\varphi} e^{\left(\frac{-6.53 \times 10^9 \varphi^{1.5}}{\beta E}\right)}$$

- Secondary emission

- Analyze accumulated effects of DC current & power
 - DC current monitor
 - DC surface power monitor

Multipacting Benchmarking

- ICHIRO SRF cavity
- SNS high-beta cavity
- TTF-III coupler components

MP Simulation for ICHIRO Cavity

MP trajectories (left) and barriers (right) in regular SRF cells. Soft barrier at around 23MV/m agrees with RF tests.

MP Trajectory @ 29.4 MV/m

	Track3P MP simulation		ICHIRO #0 (K. Saito,KEK)	
	Impact Energy (eV)	Gradient (MV/m)	X-ray Barriers (MV/m)	
	300-400(6 order)	12	11-29.3 12-18	
	200-500 (5 order)	14	13, 14, 14-18, 13-27	
	300-500(3 order)	17	(17, 18)	
	300-900(3 order)	21.2	20.8	
	600-1000(1.5 order)	29.4	28.7, 29.0, 29.3, 29.4	

MP barriers in the beam pipe step region

Multipacting in SNS HOM Coupler

- SNS SCRF cavity experienced RF heating at HOM coupler
- 3D MP simulations showed MP barriers closed to measurements
- Similar analysis are carried out for ILC ICHIRO and crab cavity

Mulitpacting in Coax of TTFIII Coupler

Simulated power (kW)	170~190	230~270	350~390	510~590	830~1000
Power in Coupler (kW)	43~170	280~340	340~490	530~660	850~1020

Dark Current Benchmarking

- 30-cell NLC X-Band structure
- X-Band waveguide bend

X-Band 30-Cell Structure Dark Current Simulation

Surface Physics Benchmark in Track3P

High power tests on a NLC waveguide bend provided measured data on the <u>X-ray spectrum</u> to allow benchmarking of the surface physics module in *Track3P* that consists of primary and secondary emission models.

Evolution to steady -state

CLIC HDX simulation

in collaboration with CERN (A. Grudiev, W. Wuensch…)

HDX-11 After RF Testing

Input

ADVANCED COMPUTATION

CLIC HDX-11 Simulation

- HDX-11: 11 regular cells plus 2 matching cells
- Track3P simulation: 4 regular cells plus 2 matching cells. Will simulate full HDX structure
 - to analyze MP in ideal and misaligned geometries
 - to calculate dark current surface heating

Quadratic element with local refinement around the slots

HDX Surface E & B Fields

Fields enhanced around rounded slot

Electron Trajectory & Impact Energy

At 85 MV/m gradient, energy of dark current electrons can reach ~0.4 MeV on impact

Dark Current Particles and Heating

Field emitted and secondary electrons and surface heating

Dark Current Heating Monitor

Dark current heating distribution

DC and RF Heating

- Dark current heating concentrated around the high E region on iris
 - high impact energy at high gradient
 - significant power if high field emission
 - Will analyze dependence on iris aperture and iris tapering
- Dark Current Heating may play an important role in surface degradation..., (DC+RF)

HDX with Misalignment

- Model: top half of the center disk shifted 42 μ m in +z
- Finite element mesh ideal for modeling such small geometry features

Mesh around misaligned disk

Non zero Ex field on symmetry plane in misaligned geometry

HDX Multipacting Simulation

- HDX with misalignment
- Multipacting in coupler and disk slot

Zenghai Li X-Band Workshop, Dec 1-4, 2008

Multipacting In HDX

Gradient level scanned from 85 MV/m to 105 MV/m

MP z Location

MP X Location

MP Y Location

Summary

- The Advanced Computations Dept. (ACD) has developed a comprehensive set of *parallel* EM codes that have been benchmarked and applied to R&D of major accelerator projects
- Mutipacting & Dark Current simulations are effective tools, in complementary to experimental measurement, help to gain insight of RF processes in the accelerator structure
- Progress is being made in simulating HDX and other HG structures using these codes

DWS Structure

- Heavily tapered structure
 - Cell-to-cell mismatch?
 - Dark current?

DWS Structure

no significant cell-to-cell mismatch

