

Recent Results on CLIC X-band prototype accelerating structures

- > Introduction
- > T18_vg2.6_disk, forward and backwards
- > TD18_vg2.4_quad
- > T28_vg3.3_disk
- Comparison and conclusions

T18_vg2.6_disk

TD18_vg2.4_quad

T28_vg2.9_disk

Steffen Döbert, X-band rf structure and beam dynamics workshop, Cockcroft Institute

CLIC prototype structures are designed, manufactured and tested in Collaboration between KEK, SLAC and CERN Thanks to everybody involved !

CLIC requirements: 100 MV/m loaded gradient (312 bunches 3.7 10⁹ e⁻) very strong HOM damping (0.5 ns bunch spacing) high efficiency > 20 % high reliability, trip rate < 3 10⁻⁷/m

Goal: CLIC feasibility demonstration until 2010

Structure parameters

Rf parameters along the structure for T18 and T28 design

Parameters of unloaded (deshed) and loaded (solid) structure

Structure design aimed for low group velocity, small aperture and low input power

T18_vg2.6_disk

Collaboration between KEK, SLAC and CERN Design by CERN, fabrication by KEK, surface prep., bonding and testing at SLAC

Frequency:	11.424 GHz
Cells:	18+2 matching cells
Filling Time:	36 ns
Length: active acceleration	18 cm
Iris Dia. a/λ	0.155~0.10
Group Velocity: vg/c	2.6-1.0 %
Phase Advace Per Cell	2π/3
Power for <ea>=100MV/m</ea>	55.5 MW
Unloaded Ea(out)/Ea(in)	1.55
Es/Ea	2

Second structure with identical preparation currently under test at KEK (see T. Higo talk)

Conditioning history of T18_disk

T18_vg2.6_disk results

CLIC goal: trip rate < 3 10⁻⁷/m

→~ factor 50-100 improvement during conditioning (5-10 observed during NLC/GLC R&D)

 \rightarrow Structure seems to be limited at the end where the fields are highest

T18_vg2.6_disk backwards

Structure was turned around and tested shortly again to see at which level the output cell would be limited

Conditioning history

T18_disk, backward vs forward

→ given the very different conditioning times and strategies a very consistent result Confirms that T18_disk was limited by its last cell

T18_vg2.6_disk backwards

Break down distribution

→ Almost all the breakdowns are in the first (former last) cell post mortem endoscope inspection showed mainly damage between the last regular iris and the matching iris

TD18_vg2.4_quad

Same rf parameter as T18_disk but HOM damping Structure made out of 4 milled bars

T18_vg2.4_QUAD Structure Assembly

Surface Preparation, brazing and assembly done at SLAC identical to disk structures

TD18_vg2.4_quad, results

→ 1000 Breakdowns after 25 hours Structure shows poor performance at low gradient and short pulse length, strong outgasing

 \rightarrow clear difference in breakdown location compared to disk structure therefore likely different limitation mechanism compared to disk version

Structure Type	L (cm)	Total Acc. Cells	^V ⁹ % с	2a mm	T mm	r MW/m	+	Qave	T _f ns
Even Cell Of T53VG3	26	30	3.30-1.62	7.8-6.3	1.66	92-107	0.19	6843	35.8

100

Accelerating Field with Input 50 MW T26 (Even or Odd Cells of T53VG3)

Structure entirely made by SLAC using NLC T53 cells

Juwen Wang

T28, conditioning history

(a) The average unloaded gradient. (b) normalized breakdown rate.

T28, breakdown position

Similar to T18_disk behavior

→ factor 10 more breakdowns for same average gradient but in terms of peak gradient not very different performance

Structure comparison

Peak gradient

 \rightarrow smaller apertures sustain higher surface fields

- We basically reached our first milestone (100 MV/m unloaded with good break down rate and pulse length without damping and optimum efficiency)
- > Damping is the next big milestone
- > Disk technology gives clearly better performance
- Very high temperature treatment and baking does not make the difference
- > T28 results unexpected
- > Tapering (surface field, power flow ?), did we go to far in T18
- New T24vg1.7_disk seems still to be the right structure for the next step towards a prototype CLIC structure
- > CLIC X-Band collaboration works great !

Mile stones and decision points

100 MV/m average gradient for CLIC pulse length with good breakdown rate and acceptable efficiency > 10 %

- > Similar performance with damping
- Similar performance, damping, better efficiency 'CLIC prototype structure T24vg1.7'
- Fully featured structure HOM loads and s-BPM's integrated (ASSET test ?)

- Review manufacturing technology, optimization strategy, baseline geometry, rf parameters
- Review damping options and parameter optimization

Structure testing program

10.10.2008		2008						2009							
		Jul	Aug	Sept	Oct	Nov	Dez	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Facility	Structure														
SLAC Station 1	T18_vg2.4_disk[1]														
11.4 GHz	TD18_vg2.4_quad[1]														
	T18_vg2.4_disk[5]														
SLAC Station 2	T28_vg2.9														
	TD18_vg2.4_disk[1]														
	T24vg1.7_disk														
	TD24vg1.7_disk														
SLAC ASTA	PETS 11.4 GHz														
	C10vg0.7[1]														
	C10vg1.3[1]														
	C10vg3.3[1]														
	C10vg2.2_thick[1]														
KEK NEXTEF															
	T18_vg2.4_disk[2]														
	T18_vg2.4_disk[3]														
	TD18_vg2.4_quad[2]														
	TD18_vg2.4_disk[2]														
CLEX 12 GHz															
	Pets 12 GHz														
	Pets [2] 12 GHz														
	T24_vg1.7_disk														
	TD24_vg1.7_disk														

Structure parameters

Name	T24_vg1.8_disk	T18_vg2.6_disk	TD18_vg2.4_quad	TD18_vg2.4_disk
Name	11WNSDGCu	11WNSDvg1Cu	11WDSQvg1Cu	11WDSDvg1Cu
N cell	24	18	18	18
a _{in,out} (mm)	3.307/2.467	4.06/2.66	4.06/2.66	4.06/2.66
Vg _{in/out}	1.82/0.93	2.61/1.02	2.41/0.92	2.24/0.87
T _{filling} (ns) (full structure)	59	36	39	41
P _{in} unloaded (MW) (100 MV/m) (only regular cells)	42.9	53.9	55.5	58.1
P _{in} unloaded (MW) (100 MV/m) (full structure)	44.2	55.5	57.3	60.0
Bunch population: N	3.72*10^9	3.72*10^9	3.72*10^9	3.72*10^9
Number of bunches/train	312	312	312	312
Nrf	6	8	8	8
P _{in} loaded (MW) (100 MV/m) (only regular cells)	54	61.7	63.6	66.4
P _{in} loaded (MW) (100 MV/m) (full structure)	55.7	63.7	65.6	68.5
Pulse length (ns)	236.8	267.4	272.9	276.4
P/c (Wu)	14.7	15.0	15.5	16.2
Efficiency (%) (no coupler included)	30.5	17.7	16.8	15.9

Parameters of new structure TD24vg1.7

Structure	TD24vg1.7	
Frequency: <i>f</i> [GHz]	12	 <u>9</u> 250 <u></u> <u>2</u> 4
Average iris radius/wavelength: <a>/A	0.11	225
Input/Output iris radii: <i>a</i> _{1,2} [mm]	3.15, 2.35	
Input/Output iris thickness: $d_{1,2}$ [mm]	1.67, 1.00	E Pload = 63/8 MW, Pload = 11.9 MW
N. of reg. cells, str. length: N _c , /[mm]	24, 229	Eff = 27.7 %
Bunch separation: N_s [rf cycles]	6	$f_{p} = 22.4 \text{ ns}, t_{p} = 62.9 \text{ ns}, t_{p} = 240.8 \text{ ns}$
Luminosity per bunch X-ing: $L_{b\times}$ [m ⁻²]	1.22×10 ³⁴	
Bunch population: N	3.72×10 ⁹	ш ^и С
Number of bunches in a train: N_b	312	
Filling time, rise time: r_f , r_r [ns]	62.9, 22.4	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Pulse length: r_p [ns]	240.8	□ [□] 49.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47
Input power: P _{in} [MW]	63.8	29 plac
$P_{in}/Ct_{p}^{P_{1/3}}[MW/mm ns^{1/3}]$	18	
Max. surface field: <i>E_{surf}^{max}</i> [MV/m]	245	
Max. temperature rise: ΔT^{max} [K]	53	iris number
Efficiency: n[%]	27.7	
Figure of merit: $\eta L_{bx} / N[a.u.]$	9.1	7