

X-Band Deflectors Development at SLAC

Juwen Wang
SLAC National Accelerator Laboratory
December 2008

Outline

- 1. Introduction of Deflector
- 2. Deflector Applications
- 3. Time-resolved electron bunch diagnostics for the LCLS.
- 4. Super fast RF kicker for the PEP-X Light Source.

Contributors

- G. Bowden, V. Dolgashev, P. Emma,
- J. Frisch, E. Jongewaard, D. Schultz,
- S. Tantawi, J.W. Wang

1. Introduction

Early Deflectors

The RF deflectors were developed from 1960's for high energy particles separation using the interaction with a transversely deflecting HEM11 mode.

Retest of a 13-cell S-Band LOLA structure built in 1960s, which has been installed in LCLS and used for beam diagnostics.

Complex reflection while a 8mm bead pulling through the deflector with 7.5 mm offset

Advantages of Traveling Wave X-Band Deflectors

- Simpler RF systems without the requirement of circulators for standing wave structures.
- Higher shunt impedances (proportional to the square root of frequency) than structures working at lower frequencies.
- SLAC is well advanced in the state of art in high power X-Band RF source including klystrons and pulse compression systems.

Profile of a Structure for Fast Kicker

As a measure of the deflecting efficiency, the transverse shunt impedance r_{\perp} is defined as:

$$r_{\perp} = \frac{\left(\frac{c}{\omega} \frac{\partial E_z}{\partial r}\right)^2}{\partial P / \partial z}$$

where z and r is structure longitudinal and transverse axis respectively, E_z is the electrical field amplitude for the dipole mode with angular frequency ω and P is the RF power as function of z.

Using the simulation codes for electromagnetic field in RF structures, the transverse shunt impedance can be calculated from:

$$r_{\perp} = \frac{QV_{\perp}^{2}}{\omega UL} = \frac{c^{2}QV_{z}^{2}}{\omega^{3}r_{0}^{2}UL}$$

Bunch Length Measurement Using a RF Deflector

Principal of operation of the TM11 transverse deflecting RF cavity to crab the electron beam and measure its bunch length on a profile monitor.

Bunch length measured as a function of RTL compressor voltage.

2. Deflector Applications

Applications of Deflectors

- 1. Time-resolved electron bunch diagnostics for LCLS and other FEL projects worldwide.
 - > 33 MV vertical deflecting voltage (10-fs temporal resolution)
 - Optimization for high RF efficiency
 - Meet all requirements for beam line tolerances.
- 2. Super-fast RF kicker for picking single bunch from bunch-train in the FEL insertion elements designed for the PEP-X to use B-Factory bunches.
 - Short RF filling time < 6 ns
 - > 5 MV vertical deflecting voltage
 - Realistic RF power requirement
- 3. RF kicker for the ILC damping ring.
- 4. RF separator for ± particles.
- 5. Crab cavity for linear collider.

3. Time-resolved electron bunch diagnostics for the LCLS

Requirement to the Future Deflector

In order to characterize the extremely short bunch of the LCLS project, we need to extend the time-resolved electron bunch diagnostics to the scale of 10-20 fs. We have to consider a new RF deflector with much powerful deflecting capability. The peak deflecting voltage necessary to produce a temporal bunch resolution of Δ t is:

$$eV_{\perp} \approx n \frac{\lambda}{2\pi c \Delta t} \sqrt{\frac{\varepsilon_N Emc^2}{\beta_d}}$$

where E is the electron energy and the transverse momentum of the electron at time Δt (with respect to the zero-crossing phase of the RF) is $py = eV^{\perp}/c$, n is the kick amplitude in the unit of nominal rms beam size, λ is the RF wavelength, εN is the normalized rms vertical emittance, c is the speed of light, and βd is the vertical beta function at the deflector. This is for an RF deflector, which is $\pi/2$ in betatron phase advance from a downstream screen.

Deflector Specifications

Parameters for a 10-fs temporal resolution using an X-band RF deflecting cavity

Parameter	symbol	value	unit
Electron energy	E	13.6	GeV
Desired temporal resolution	Δt	10	fs
Offset of Δt -particle on screen, in units of rms beam size	n	2	
RF wavelength of deflector (X-band)	λ	26	mm
Vertical normalized rms emittance	$\mathcal{E}_{\!N}$	1	μm
Vertical beta function at the center of the RF deflector	eta_d	50	m
Peak vertically accelerating voltage seen by beam	V	33	MV

Approximate specifications for an X-band RF deflecting cavity

Parameter	symbol	value	unit
Maximum repetition rate	f	120	Hz
Minimum iris radius (if located after undulator)	r	5	mm
Maximum cavity length (approx.)	L	2	m
Minimum RF pulse length	$\Delta au_{\!RF}$	100	ns
RF frequency	f_{RF}	11.424	GHz
RF phase stability at $f > 1$ Hz (rms)	φ_{rms}	0.05	deg-X
RF relative amplitude stability (rms)	$\Delta V/V_0$	1	%

Paul Emma Technical Note Oct. 18, 2006

Deflector Location: After Undulator

Design Examples for a Deflector

Frequency	11.424 GHz
Beam pipe diameter	10 mm
One cell length	8.747 mm
Phase advance per cell	$2\pi/3$
Kick per meter	31 MeV/m/Sqrt
[MeV/Sqrt [MW]]	(20 MW)
102 cell structure kick	21.3 MeV/Sqrt(20 MV)
Group velocity/ speed of	3.2 %
light	
Filling time	92 ns
Structure length (with	~94 cm
beam pipes)	

Structure type	TW DLWG
Mode	2 π /3 Backward wave
Wode	2 Jt /3 Backward wave
Aperture 2a	10.00 mm
Cavity diameter 2b	29.74 m
Cell length d	8.7475 mm
Disk thickness	1.45 mm
Quality factor Q	6400
Kick factor k	2.986x10 ¹⁶ V/C/m/m
Transverse shunt	43.17 M Ω /m
impedance r⊥	
Group velocity Vg/c	- 3.165 %
Total length L	1.5 m
Filling time T _f	158 ns
Attenuation factor T	0.885
Input peak RF power	30 MW
Maximum electric field	129 MV/m
Maximum magnetic field	0.45 MA/m
Deflecting voltage	38.9 MV

Structure design for a two-section system by Valery (LDRD Proposal)

Structure design for a one-section system by Juwen & Sami (LINAC2008, SLAC-PUB-13444)

System Layout

Two-section system

One-section system

Cup Shapes for Stabilization of Desired Polarized Dipole Modes

Preliminary Design for Deflector Cups

Coupler Design Simulation

Finite-element electromagnetic simulation of one quarter of traveling wave x-band deflector input: *a)* surface electric fields; *b)* surface magnetic fields. The fields are calculated for 20 MW of transmitted power, or 21.3 MeV kick for 89 cm structure.

Coupler Design

Preliminary Schedule of the Deflector Project

4. Super fast RF kicker for the PEP-X Light Source

SLAC Challenge – Super Fast Kicker

It has been proposed to convert the SLAC B-factory to a very strong FEL light source called PEP-X. In order to pick up single bunches from the bunch-trains, we need to have an ultra-fast RF kicker.

There are 1746 bunches circulating in an orbit with 2200 meters circumference in the B-factory. The bunch spacing is two RF periods with 1.26 m in space or 4.2 ns in time. Therefore, the most challenging design issues are to obtain less than 6 ns RF filling time and more than 5 MV vertical deflecting voltage.

"HEM-11 modes revisited"

J.W. Wang and G.A. Loew (SLAC). SLAC-PUB-5321, Sep. 1990.

The red dot shows a calculated $\pi/3$ mode case for a=5 mm, b=14.9546, (a/b=0.334). Vg/c=4.2%, Tf~40 ns for a 0.5m structure. It is hard to increase Vg by factor of 5. Need to explore the forward wave region.

Figure 2. Dispersion diagrams and E-field configurations of TM01 and HEM11 modes as the b-dimension is kept fixed (4.13 cm) and the ratio a/b varies between 0 and 1.

Parameter Studies

Profile of a Structure for Fast Kicker

High Power X-Band RF System for the Fast Kicker

Schematic Diagram of the SLED-II System

Waveforms of the input and output power for a SLED-II system.

Design Example for a Fast Kicker

Structure type	TW DLWG
Ž.	
Mode	2 π /3 Forward wave
Aperture 2a	27.0 mm
Cavity diameter 2b	35.33 mm
Cell length d	8.7475 mm
Disk thickness	1.45 mm
Quality factor Q	9763
Kick factor k	1.052x10 ¹⁶ V/C/m/m
Transverse shunt	2.39 M Ω /m
impedance r⊥	
Group velocity Vg/c	52.4 %
Total length L	0.75 m
Filling time T _f	4.77 ns
Attenuation factor τ	0.0176
Input peak RF power	400 MW
Maximum electric field	121 MV/m
Maximum magnetic field	0.19 MA/m
Deflecting voltage	5 MV