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Motivation

To provide rf designers with a local field quantity 
which limits high-power/high-gradient performance in 
the presence of rf breakdowns.

Make a theory and 
verify with 

measured data

Make a fit to 
measured data 

and try to 
understand
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Introduction

The high-gradient performance depends on:
1. Geometry of the cavity:   rf design
2. Surface of the cavity :    anything else than rf

design
• Material
• Heat treatment
• Machining
• Chemical treatment

3. Measurement technique and experimental setup
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Introduction

Variation of high-gradient performance of the same rf design.

Normalized gradient for H60vg3 rf 
design
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Normalized gradient for H60vg4R17/S17 
rf design 
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N.B. Variation of up to tens of percents can be expected from the 
difference in the surface state, statistics and measurement setup.
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Experimental data @ 200ns, BDR=10-6

N Name [GHz] [o] [%] [m]

1 DDS1 11.424 120 11.7 – 3 1.8

2 T53vg5R 11.424 120 5.0 - 3.3 0.53

3 T53vg3MC 11.424 120 3.3 - 1.6 0.53

4 H90vg3 11.424 150 3.1 - 1.9 0.9

5 H60vg3 11.424 150 3 - 1.2 0.6

6 H60vg3S18 [ 11.424 150 3.3 -1.2 0.6

7 H60vg3S17 [ 11.424 150 3.6 -1.0 0.6

8 H75vg4S18 11.424 150 4.0 -1 0.75

9 H60vg4S17 [ 11.424 150 4.5 -1 0.6

10 HDX11 11.424 60 5.1 0.05

11 CLIC-X-band 11.424 120 1.1 0.23

12 T18vg2.6 11.424 120 2.6 - 1.0 0.18

13 SW20a3.75 11.424 180 0 0.2

14 SW1a5.65t4.6 11.424 180 0 0.013

15 SW1a3.75t2.6 11.424 180 0 0.013

16 SW1a3.75t1.66 11.424 180 0 0.013

17 2π/3 29.985 120 4.7 0.1

18 π/2 29.985 90 7.4 0.1

19 HDS60 29.985 60 8.0 - 5.1 0.1

20 HDS60-Back 29.985 60 5.1 - 8.0 0.1

21 PETS9mm 29.985 120 39.8 0.4

fϕΔ cvgL

Accelerating gradient 
at 200ns, BDR=10-6
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BDR versus Gradient in Cu structures (expon. fit)

H90vg5N at 100ns

2pi/3 at 70ns 

HDS60L at 70ns

HDS60S at 70ns

T53vg3MC at 100ns

H75vg4S18 at 150ns

HDX11 at 70ns

T18vg2.6 at 230ns, 500hrs

Expon. (H90vg5N at 100ns)

Expon. (2pi/3 at 70ns )

Expon. (HDS60L at 70ns)

Expon. (HDS60S at 70ns)

Expon. (T53vg3MC at 100ns)

Expon. (H75vg4S18 at 150ns)

Expon. (HDX11 at 70ns)

Expon. ( T18vg2.6 at 230ns, 
500hrs)

BDR versus Gradient scaling

Exponential fit requires different slope depending on the gradient
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BDR versus Gradient scaling

Power fit can be done with the same power for all gradients
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BDR versus Gradient scaling

aEeBDR α~ γ
aEBDR ~

30~ aEBDR
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Gradient versus pulse length scaling
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Gradient versus pulse length at BDR=10-6

T53VG3MC

H90VG3

H75VG4S18

H60VG4R17-2

HDX11-Cu

2pi/3

HDS60L

T18vg2.6, 900hrs
Power (T53VG3MC)

Power (H90VG3)
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Power (H60VG4R17-2)
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consttE p =⋅ 6/1

N.B. This is very well known scaling law being confirmed again and again
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Summary on gradient scaling

consttE pa =⋅ 6/130~ aEBDR
For a fixed pulse length For a fixed BDR

const
BDR

tE pa =
⋅ 530

• In a Cu structure, ultimate gradient Ea can be scaled to certain 
BDR and pulse length using above power law. It has been used in 
the following analysis of the data. 

• The aim of this analysis is to find a field quantity X which is 
geometry independent and can be scaled among all Cu structures.
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Cell gradients

Cell Accelerating and surface gradients @ 200ns, BDR=10-6 bpp/m
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Power over circumference

Power over circumference @ 200ns, BDR=10-6 bpp/m

Much better agreement 
but

1. This is not a local 
field quantity.

2. H75vg4S18 does not 
really fit.

3. Does not describe 
standing wave 
structures.

4. Needs frequency 
scaling

18Wu
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Breakdown initiation scenario

Qualitative picture
• Field emission currents JFN heat a (potential) 

breakdown site up to a temperature rise ∆T on each 
pulse.

• After a number of pulses the site got modified so that 
JFN increases so that ∆T increases above a certain 
threshold.

• Breakdown takes place.

This scenario can explain:
• Dependence of the breakdown 

rate on the gradient (Fatigue)
• Pulse length dependence of the 

gradient (1D÷3D heat flow from 
a point-like source)

Ploss Prf
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EM fields around a tip of β=30

Electric field (log scale)

Unperturbed
rf power flow:
S = E x H
H = const

Field emission 
power flow:
SFN = E x HFN

HFN = IFN/2πr

IFN

H HFNH
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Field emission and rf power flow

Ploss

Prf
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There are two regimes depending on the level of rf power flow
1. If the rf power flow dominates, the electric field remains 

unperturbed by the field emission currents and heating is 
limited by the rf power flow (We are in this regime) 

2. If power flow associated with field emission current PFN
dominates, the electric field is reduced due to “beam loading” 
thus limiting field emission and heating

P’rf
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Field emission and power flow
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Field emission and rf power coupling

What matters for the breakdown is the amount of 
rf power coupled to the field emission power flow.
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Assuming that all breakdown sites have the same 
geometrical parameters the breakdown limit can be 
expressed in terms of modified Poynting vector Sc.
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Field emission and rf power coupling
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Constant gc depends 
only on the value of 
the local surface 
electric field βE0

gc is in the range:
from 0.15 to 0.2
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New rf breakdown constraint Sc

{ } { } 6ImRe SS +=cS

Sc = 4 ÷ 5 [MW/mm2] 
at 200ns, BDR=1e-6 bpp/m  
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Sc in CLIC_G

Sc reaches 5.55 for 
nominal parameters.
Scaling it to 200ns gives:
5.55*(171.6/200)^1/3 = 5.3
To be compared with the
measured data.
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Sc in CLIC_G

Sc values in CLIC_G for 
the nominal parameters is 
very challenging
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Analytical estimates for a cylindrical tip

For a cylindrical protrusion heat conduction is described by:

ρ2
2

2

J
x
TK

t
TCV +

∂
∂

=
∂
∂

Let’s get approximate solution it in two steps:
1. Solve it in steady-state (i.e. left hand  

side is zero) for a threshold current 
density required to reach melting 
temperature Tm

2. Solve time dependent equation in linear 
approximation to get the threshold time 
required to reach melting temperature

Williams & Williams,
J. Appl. Rhys. D,
5 (1972) 280
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Analytical estimates for a cylindrical tip

Case B: Resistivity is temperature-dependent:
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Analytical estimates for a cylindrical tip

Fundamental constants for copper
Thermal conductivity: K [W/m·K] 400
Volumetric heat capacity: CV [MJ/m3·K] 3.45
Resistivity@300K: ρ0 [nΩ·m] 17
Melting temperature: Tm [K] 1358

Some numbers for Case B: ρ = ρ0·T/T0

τm ~ 100 ns h ~ 1 μm Jm ~ 36 A/μm2

βE ~ 12 GV/mE ~ 300 MV/m β ~ 40

r ~ 25 nmβ ≈ h/r
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Analytical estimates for a cylindrical tip

Some numbers for Case 2: ρ = ρ0·T/T0 (Continue)

h ~ 1 μm

E ~ 300 MV/m

r ~ 25 nm

β ~ 40

βπ
π

22

2 rJE
h
rJEHES FNhFN ===

Jm ~ 36 A/μm2

SFN ~ 3.4 W/μm2
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Conclusions on the new rf constraint

• All (?) available results of the high gradient rf tests 
has been collected and analyzed 
• A model of the breakdown trigger has been developed 
based on the pulsed heating of the potential breakdown  
site by the field emission currents
• A new field quantity, modified Poynting vector: Sc, has 
been derived which takes into account both active and 
reactive power flow
• This new field quantity describes both travelling wave 
and standing wave accelerating structure experimental 
results rather well.
• The value of Sc achieved in the experiments agrees 
well with analytical estimate 
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