

A New Local Field Quantity Describing the High-Gradient Limit of Accelerating Structures

December, 2008

Alexej Grudiev, Walter Wuensch

To provide rf designers with a local field quantity which limits high-power/high-gradient performance in the presence of rf breakdowns.

The high-gradient performance depends on:

- Geometry of the cavity: rf design
- 2. Surface of the cavity : anything else than rf design
	- •Material
	- •Heat treatment
	- •Machining
	- •Chemical treatment
- 3. Measurement technique and experimental setup

Variation of high-gradient performance of the same rf design.

N.B. Variation of up to tens of percents can be expected from the difference in the surface state, statistics and measurement setup.

Experimental data @ 200ns, BDR=10-6

 $\oint_{g}q/c$

IIIIIIIII— [IIIIIIIII]— [IIIIIIIII

Structure Number

Accelerating gradient at 200ns, BDR=10-6

TITTLE DITIONER *C L I C C L I C*

BDR versus Gradient scaling

Exponential fit requires different slope depending on the gradient

BDR versus Gradient scaling

Power fit can be done with the same power for all gradients

BDR versus Gradient scaling

Power (2pi/3)

Power (HDS60L)

Power (T18vg2.6, 900hrs)

N.B. This is very well known scaling law being confirmed again and again

0 100 200 300 400 500

pulse length [ns]

0

- •In a Cu structure, ultimate gradient E_a can be scaled to certain BDR and pulse length using above power law. It has been used in the following analysis of the data.
- •The aim of this analysis is to find a field quantity X which is geometry independent and can be scaled among **all** Cu structures.

Cell Accelerating and surface gradients @ 200ns, BDR=10-6 bpp/m

Power over circumference

Structure Number

Much better agreement

- 1. This is not a local field quantity.
- 2. H75vg4S18 does not
- 3. Does not describe standing wave
- 4. Needs frequency scaling

Power over circumference @ 200ns, BDR=10-6 bpp/m

Qualitative picture

- \cdot Field emission currents J_{FN} heat a (potential) breakdown site up to a temperature rise ∆T on each pulse.
- • After a number of pulses the site got modified so that $\rm J_{FN}$ increases so that $\rm \Delta T$ increases above a certain threshold.
- •Breakdown takes place.

This scenario can explain:

- • Dependence of the breakdown rate on the gradient (Fatigue)
- • Pulse length dependence of the gradient (1D÷3D heat flow from a point-like source)

$$
\begin{aligned}\n\Delta T &\sim P_{loss} &<< P_{FN} \leq P_{rf} \\
P_{loss} &= \int_{V} J_{FN}^2 \rho \, dv \\
P_{FN} &= \oint_{S} E \times H_{FN} \, ds \sim E \cdot I_{FN} \\
P_{rf} &= \oint_{S} E \times H \, ds \\
\end{aligned}
$$

There are two regimes depending on the level of rf power flow

- 1. If the rf power flow dominates, the electric field remains unperturbed by the field emission currents and heating is limited by the rf power flow (We are in this regime)
- 2. If power flow associated with field emission current P_{FN} dominates, the electric field is reduced due to "beam loading" thus limiting field emission and heating

Field emission and power flow

$$
E \times H = E_0 \cdot H_0^{TW} \sin^2 \omega t + E_0 \cdot H_0^{SW} \sin \omega t \cos \omega t
$$

$$
I_{FN} \cdot E = AE_0^3 \sin^3 \omega t \cdot \exp\left(\frac{-62 \text{GV/m}}{\beta E_0 \sin \omega t}\right)
$$

What matters for the breakdown is the amount of rf power coupled to the field emission power flow.

Field emission and rf power coupling

$$
P_{coup} = \int_{0}^{T/4} P_{rf} \cdot P_{FN} dt / \left(\int_{0}^{T/4} P_{FN} dt \cdot \int_{0}^{T/4} P_{rf} dt \right)
$$

= $C^{TW} E_{0} H_{0}^{TW} + C^{SW} E_{0} H_{0}^{SW}$

Assuming that all breakdown sites have the same geometrical parameters the breakdown limit can be expressed in terms of modified Poynting vector S_c.

$$
S_c = E_0 H_0^{TW} + \frac{C^{SW}}{C^{TW}} E_0 H_0^{SW} = \text{Re}\{\mathbf{S}\} + g_c \cdot \text{Im}\{\mathbf{S}\}
$$

C L I CC L I C **Field emission and rf power coupling**

Constant g_c depends only on the value of the local surface electric field $βE_0$

C L I C C L I C

$$
g_c = \frac{\int_{0}^{\pi/2} \sin^4 x \cos x \cdot \exp\left(\frac{-62 \text{GV/m}}{\beta E_0 \sin x}\right) dx}{\int_{0}^{\pi/2} \sin^5 x \cdot \exp\left(\frac{-62 \text{GV/m}}{\beta E_0 \sin x}\right) dx}
$$

 g_c is in the range: from 0.15 to 0.2

New rf breakdown constraint S.

Structure Number

 S_{c} reaches 5.55 for $\;$ nominal parameters. Scaling it to 200ns gives: $5.55*(171.6/200)^{1/3} = 5.3$ To be compared with the

measured data.

 S_{c} values in CLIC_G for the nominal parameters is very challenging

C L I CC L I C

For a cylindrical protrusion heat conduction is described by:

Williams & Williams, J. Appl. Rhys. D, 5 (1972) 280

$$
C_V \frac{\partial T}{\partial t} = K \frac{\partial^2 T}{\partial x^2} + J^2 \rho
$$

Let's get approximate solution it in two steps:

- 1. Solve it in steady-state (i.e. left hand side is zero) for a threshold current density required to reach melting temperature T_m
- 2. Solve time dependent equation in linear approximation to get the threshold time required to reach melting temperature

Analytical estimates for a cylindrical tip

Case B: Resistivity is temperature-dependent: $\rho = \rho_{\text{o}} \cdot T/T_{\text{o}}$ **(Bloch-Grüneisen)**

Step 1:
\n
$$
K \frac{\partial^2 T}{\partial x^2} + J^2 \rho = 0;
$$
 $T \big|_{x=h} = T_0;$ $T \big|_{x=0} = T_m;$ $\frac{\partial T}{\partial x} \big|_{x=0} = 0$
\n $T = T_m \cos \sqrt{\frac{J^2 \rho_0}{KT_0}} x;$ $J_m^{\rho 1} = \sqrt{\frac{KT_0}{h^2 \rho_0}} \arccos \frac{T_0}{T_m}$

Step 2:

$$
C_V \frac{\partial T}{\partial t} = J^2 \rho; \quad T|_{t=0} = T_0; \quad T|_{t=t_m} = T_m
$$

$$
T = T_0 \exp \frac{J^2 \rho_0}{C_V T_0} t; \quad \tau_m^{\rho 1} = \frac{C_V T_0}{J^2 \rho_0} \ln \frac{T_m}{T_0} = \frac{C_V}{K} h^2 \ln \frac{T_m}{T_0} / \arccos^2 \frac{T_0}{T_m}
$$

Some numbers for Case B: $\rho = \rho_0 \cdot T/T_0$

C L I C C L I C

Alexej Grudiev, New RF Constraint. Dec. 2008

• All (?) available results of the high gradient rf tests has been collected and analyzed

- • A model of the breakdown trigger has been developed based on the pulsed heating of the potential breakdown site by the field emission currents
- • \cdot A new field quantity, modified Poynting vector: S_{c} , has been derived which takes into account both active and reactive power flow
- • This new field quantity describes both travelling wave and standing wave accelerating structure experimental results rather well.
- • \cdot The value of S_{c} achieved in the experiments agrees well with analytical estimate

- •• Sergio Calatroni
- •Chris Adolphsen
- Steffen Doebert

•

…