

A New Local Field Quantity Describing the High-Gradient Limit of Accelerating Structures

December, 2008

Alexej Grudiev, Walter Wuensch

Alexej Grudiev, New RF Constraint.

To provide rf designers with a local field quantity which limits high-power/high-gradient performance in the presence of rf breakdowns.

The high-gradient performance depends on:

- 1. Geometry of the cavity: rf design
- 2. Surface of the cavity : anything else than rf design
 - Material
 - Heat treatment
 - Machining
 - Chemical treatment
- 3. Measurement technique and experimental setup

Variation of high-gradient performance of the same rf design.

N.B. Variation of up to tens of percents can be expected from the difference in the surface state, statistics and measurement setup.

Experimental data @ 200ns, BDR=10⁻⁶

20	HDS60-Back	29.985	60	5.1 - 8.0	0.1
19	HDS60	29.985	60	8.0 - 5.1	0.1
18	π/2	29.985	90	7.4	0.1
17	2π/3	29.985	120	4.7	0.1
16	SW1a3.75t1.66	11.424	180	0	0.013
15	SW1a3.75t2.6	11.424	180	0	0.013
14	SW1a5.65t4.6	11.424	180	0	0.013
13	SW20a3.75	11.424	180	0	0.2
12	T18vg2.6	11.424	120	2.6 - 1.0	0.18
11	CLIC-X-band	11.424	120	1.1	0.23
10	HDX11	11.424	60	5.1	0.05
9	H60vg4S17 [11.424	150	4.5 -1	0.6
8	H75vg4S18	11.424	150	4.0 -1	0.75
7	H60vg3S17 [11.424	150	3.6 -1.0	0.6
6	H60vg3S18 [11.424	150	3.3 -1.2	0.6
5	H60vg3	11.424	150	3 - 1.2	0.6
4	H90vg3	11.424	150	3.1 - 1.9	0.9
3	T53vg3MC	11.424	120	3.3 - 1.6	0.53
2	T53vg5R	11.424	120	5.0 - 3.3	0.53
1	DDS1	11.424	120	11.7 – 3	1.8
Ν	Name	[GHz]	[°]	[%]	[m]

 $\mathbf{J}_{g} \varphi c$

Structure Number

Accelerating gradient at 200ns, BDR=10⁻⁶ **BDR versus Gradient scaling**

Exponential fit requires different slope depending on the gradient

BDR versus Gradient scaling

Power fit can be done with the same power for all gradients

Alexej Grudiev, New RF Constraint.

Gradient versus pulse length scaling CLIC Gradient versus pulse length at BDR=10⁻⁶ $E \cdot t^{1/6}$ const 120 T53VG3MC $v = 236.92x^{-0.144}$ 100 H90VG3 y = 220.55x $y = 264.8x^{-0.203}$ average gradient [MV/m] H75VG4S18 H60VG4R17-2 364.73x-0.26 80 * HDX11-Cu $y = 182.05x^{-0.173}$ $y = 150.24x^{-0.147}$ 2pi/3 60 + HDS60L $y = 114.03x^{-0.157}$ T18vg2.6, 900hrs - Power (T53VG3MC) 40 $y = 96.223x^{-0.179}$ Power (H90VG3) - Power (H75VG4S18) 20 - Power (H60VG4R17-2) Power (HDX11-Cu) -Power (2pi/3) 0 Power (HDS60L) 100 200 300 400 500 0 -Power (T18vg2.6, 900hrs) pulse length [ns]

N.B. This is very well known scaling law being confirmed again and again

- In a Cu structure, ultimate gradient E_a can be scaled to certain BDR and pulse length using above power law. It has been used in the following analysis of the data.
- The aim of this analysis is to find a field quantity X which is geometry independent and can be scaled among all Cu structures.

Cell Accelerating and surface gradients @ 200ns, BDR=10⁻⁶ bpp/m

8

Power over circumference

Structure Number

Much better agreement but

- This is not a local field quantity.
- H75vg4S18 does not really fit.
- Does not describe standing wave structures.
- 4. Needs frequency scaling

Power over circumference @ 200ns, BDR=10⁻⁶ bpp/m

Qualitative picture

- Field emission currents J_{FN} heat a (potential) breakdown site up to a temperature rise ΔT on each pulse.
- After a number of pulses the site got modified so that J_{FN} increases so that ΔT increases above a certain threshold.
- Breakdown takes place.

This scenario can explain:

- Dependence of the breakdown rate on the gradient (Fatigue)
- Pulse length dependence of the gradient (1D÷3D heat flow from a point-like source)

Alexej Grudiev, New RF Constraint.

There are two regimes depending on the level of rf power flow

- 1. If the rf power flow dominates, the electric field remains unperturbed by the field emission currents and heating is limited by the rf power flow (We are in this regime)
- If power flow associated with field emission current P_{FN} dominates, the electric field is reduced due to "beam loading" thus limiting field emission and heating

Field emission and power flow

$$E \times H = E_0 \cdot H_0^{TW} \sin^2 \omega t + E_0 \cdot H_0^{SW} \sin \omega t \cos \omega t$$
$$I_{FN} \cdot E = A E_0^3 \sin^3 \omega t \cdot \exp\left(\frac{-62 \, GV/m}{\beta E_0 \sin \omega t}\right)$$

What matters for the breakdown is the amount of rf power coupled to the field emission power flow.

Field emission and rf power coupling

$$P_{coup} = \int_{0}^{T/4} P_{rf} \cdot P_{FN} dt / \left(\int_{0}^{T/4} P_{FN} dt \cdot \int_{0}^{T/4} P_{rf} dt \right)$$
$$= C^{TW} E_0 H_0^{TW} + C^{SW} E_0 H_0^{SW}$$

Assuming that all breakdown sites have the same geometrical parameters the breakdown limit can be expressed in terms of modified Poynting vector S_c .

$$S_{c} = E_{0}H_{0}^{TW} + \frac{C^{SW}}{C^{TW}}E_{0}H_{0}^{SW} = \operatorname{Re}\{\mathbf{S}\} + g_{c}\cdot\operatorname{Im}\{\mathbf{S}\}$$

Field emission and rf power coupling

Constant g_c depends only on the value of the local surface electric field βE_0

<u>CLIC</u>

$$g_{c} = \frac{\int_{0}^{\pi/2} \sin^{4} x \cos x \cdot \exp\left(\frac{-62 \, GV/m}{\beta E_{0} \sin x}\right) dx}{\int_{0}^{\pi/2} \sin^{5} x \cdot \exp\left(\frac{-62 \, GV/m}{\beta E_{0} \sin x}\right) dx}$$

g_c is in the range: from 0.15 to 0.2 CERN

New rf breakdown constraint S_c

Structure Number

S_c reaches 5.55 for nominal parameters. Scaling it to 200ns gives: 5.55*(171.6/200)^1/3 = 5.3 To be compared with the measured data.

S_c values in CLIC_G for the nominal parameters is very challenging

CLIC

.....

Analytical estimates for a cylindrical tip

For a cylindrical protrusion heat conduction is described by:

C L I C

Williams & Williams, J. Appl. Rhys. D, 5 (1972) 280

$$C_{V} \frac{\partial T}{\partial t} = K \frac{\partial^{2} T}{\partial x^{2}} + J^{2} \rho$$

Let's get approximate solution it in two steps:

- 1. Solve it in steady-state (i.e. left hand side is zero) for a threshold current density required to reach melting temperature T_m
- 2. Solve time dependent equation in linear approximation to get the threshold time required to reach melting temperature

.....

Analytical estimates for a cylindrical tip

Case B: Resistivity is temperature-dependent: $\rho = \rho_0 \cdot T/T_0$ (Bloch-Grüneisen)

Step 1:

$$\begin{bmatrix}
 K \frac{\partial^2 T}{\partial x^2} + J^2 \rho = 0; \quad T \Big|_{x=h} = T_0; \quad T \Big|_{x=0} = T_m; \quad \frac{\partial T}{\partial x} \Big|_{x=0} = 0$$

$$T = T_m \cos \sqrt{\frac{J^2 \rho_0}{KT_0}} x; \quad J_m^{\rho 1} = \sqrt{\frac{KT_0}{h^2 \rho_0}} \arccos \frac{T_0}{T_m}$$

Step 2:

$$C_{V} \frac{\partial T}{\partial t} = J^{2} \rho; \quad T|_{t=0} = T_{0}; \quad T|_{t=t_{m}} = T_{m}$$
$$T = T_{0} \exp \frac{J^{2} \rho_{0}}{C_{V} T_{0}} t; \quad \tau_{m}^{\rho 1} = \frac{C_{V} T_{0}}{J^{2} \rho_{0}} \ln \frac{T_{m}}{T_{0}} = \frac{C_{V}}{K} h^{2} \ln \frac{T_{m}}{T_{0}} / \arccos^{2} \frac{T_{0}}{T_{m}}$$

Fundamental constants for copper					
Thermal conductivity: K [W/m·K]	400				
Volumetric heat capacity: C _V [MJ/m ³ ·K]	3.45				
Resistivity@300K: $\rho_0 [n\Omega \cdot m]$	17				
Melting temperature: T _m [K]	1358				

Some numbers for Case B: $\rho = \rho_0 \cdot T/T_0$

• All (?) available results of the high gradient rf tests has been collected and analyzed

- A model of the breakdown trigger has been developed based on the pulsed heating of the potential breakdown site by the field emission currents
- A new field quantity, modified Poynting vector: S_c , has been derived which takes into account both active and reactive power flow
- This new field quantity describes both travelling wave and standing wave accelerating structure experimental results rather well.
- \cdot The value of S_c achieved in the experiments agrees well with analytical estimate

- Sergio Calatroni
- Chris Adolphsen
- Steffen Doebert

•

...