
Docker, Mesos & other
adventures in
Wonderland

1

Docker
Middle ground between VMs and processes

2

An “Operating System” for the cluster (http://
mesos.apache.org)

A pluggable two level scheduler for long running
services and batch jobs

First developed at UC Berkeley, now widely adopted
in the industry (Twitter, AirBnB, … Apple)

Natively supports docker containers (among other
possible isolation mechanism)

Mesos

3

http://mesos.apache.org

Mesos architecture

4

Mesos architecture
Jenkins

“Cloud” plugin

Jenkins
Slave

5

Mesos resource offers

All this available as a C++ / python / Java API
6

While writing your own “Framework” and “Scheduler”
makes sense for specific applications (e.g. the Jenkins
plugin, or what Apple did for for Siri), for more coarse
grained usage(like deploying services) you want to use
something pre-cooked (i.e. you want a PaaS).

A simple PaaS to deploy processes and containers on a
Mesos cluster is Marathon, from Mesosphere (https://
mesosphere.com)

GUI for monitoring and spawning processes

Advanced configuration via a JSON file pushed through
the REST API

Marathon

7

https://mesosphere.com

Marathon

8

Marathon

Jenkins Mesos
framework allows to

create Jenkins slaves
on the fly, disposing

them once done.

In principle the
system could
be used with
other Mesos

frameworks as
well (e.g.
Hadoop,

Spark, Storm).

9

CMS Build Infrastructure

Slave Slave Slave

Resource arbitration via 3-way
redundant Apache Mesos

setup, using different
OpenStack zones, leader

election via Zookeeper (1 dead
master resilience)

Service Discovery via DNS,
populated with A and SRV

records discovery by mesos
registry information (ala

Consul) or using Marathon
Framework REST API.

Slave Slave Slave

Master MasterMaster

nginx /
haproxy
frontend

nginx /
haproxy
frontend

nginx /
haproxy
frontend

Frontend with HA setup using
CERN LB DNS, nginx for SSL
termination and authorisation,
haproxy for traffic routing and

SSO backend

Services run on
undifferentiated CPU boxes,

either running on the bare OS
or running inside Docker

Services which we run varies
from Jenkins build slave, to

web server backends or
Elasticsearch

All the services are being
restarted automatically by

Marathon whenever they die
on machines that offer a

compatible set of resources.
Looking forward dynamic
resource allocation (i.e.

persistent disk storage on
slaves) to simplify setup even

further.

10

docker run --net=host -it cmssw/zookeeper &
docker run --net=host -it cmssw/mesos-master &
docker run --net=host -it cmssw/marathon &
docker run --net=host \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /usr/local/bin/docker:/usr/bin/docker \
 -v /sys:/sys \
 -it \
 cmssw/mesos-slave

Try it at home

Run it on your laptop (using boot2docker):

and connect to localhost:8080 (or `boot2docker ip`:8080)

11

Pipe dreaming…
• A shared pool of resources all running Mesos, with a

central Marathon instance.

• Use Marathon to run “Mesos on top of Mesos” and use it to
run a “per user” Marathon instance.

• Use the per user Marathon entry point to launch your own
Dockerized services.

• Add some economic model so that people can “buy and
sell” (or “loan and rent”) their assigned resources.

• Profit.

12

