Non-perturbative effects in Calabi-Yau compactifications

Sergei Alexandrov

Laboratoire Charles Coulomb Université Montpellier 2

in collaboration with S.Banerjee, J.Manschot, D.Persson, B.Pioline, F.Saueressig, S.Vandoren

reviews: arXiv:1111.2892

arXiv:1304.0766

The problem

extended objects in 10-dimensional spacetime

low energy limit

& compactification

Effective field theory in $M_{(4)}$

The goal: to find the complete non-perturbative effective action in 4d for type II string theory compactified on arbitrary CY

(in the 2-derivative approximation)

Motivation:

- Non-perturbative structure of string theory instantons, S-duality, mirror symmetry,...
- Preliminary step towards phenomenological models non-perturbative effects and moduli stabilization, inflationary models
- BPS black holes
- Relations to $\mathcal{N}=2$ gauge theories, wall-crossing, topological strings...
- Hidden integrability
- Extremely rich mathematical structure

Plan of the talk:

hypermultiplet moduli space

- 2. Twistorial description of Quaternion-Kähler manifolds
- 3. Quantum corrections to the HM moduli space
- 4. Twistorial description of the quantum corrections
- 5. NS5-branes & Integrability

Ungauged *𝑉*=2 supergravity

vector multiplets (Abelian gauge fields & scalars)

supergravity multiplet (metric & graviphoton) hypermultiplets (only scalars)

In our approximation:

bosonic action =
$$\frac{1}{2}R$$
 + kinetic terms + scalar potential only in gauge

only in gauged supergravity

$$\mathcal{L}_{\rm kin} = \frac{1}{2} \Im \mathcal{N}_{IJ}(z) F^I_{\mu\nu} F^{\mu\nu,J} + \frac{1}{2} \Re \mathcal{N}_{IJ}(z) F^I_{\mu\nu} (\star F)^{\mu\nu,J} \qquad \text{supergravity}$$

$$-g^{\rm VM}_{i\bar{\jmath}}(z) \partial_\mu z^i \partial^\mu \bar{z}^{\bar{\jmath}} - g^{\rm HM}_{\alpha\beta}(q) \partial_\mu q^\alpha \partial^\mu \bar{q}^\beta$$

VM sector

bosonic

HM sector

 \mathcal{N}_{IJ} is determined by the metric $g_{iar{\jmath}}^{\mathrm{VM}}$

The low-energy action is determined by the geometry of the *moduli space* parameterized by scalars of vector and hypermultiplets:

$$\left| egin{array}{cc} \mathcal{M}_{VM} & g_{iar{\jmath}}^{\mathrm{VM}}(z) \end{array}
ight|$$

$$\mathcal{M}_{HM}$$
 $q^{lpha}, \; lpha=1,...,4n_{H} \; g^{\mathrm{HM}}_{lphaeta}(q)$

VM moduli space

\mathcal{M}_{VM} — (projective) special Kähler manifold

Special Kähler manifold: a Kähler manifold whose Kähler potential is determined by a holomorphic function F(z) — holmorphic prepotential

Two versions:

- $K(z, \bar{z}) = i \left(\bar{z}^i F_i z^i \bar{F}_i\right)$ rigid special Kähler (relevant in gauge theories)
- $K(z,\bar{z})=-\log\left[\mathrm{i}\left(\bar{z}^IF_I-z^I\bar{F}_I\right)
 ight]$ local (or projective) special Kähler $z^I=(1,z^i)$ (relevant in supergravity)

F(z) — homogeneous of degree 2

In our case: F(z) is classically exact (no corrections in string coupling g_s) and determined by topological data on Calabi-Yau

Example: prepotential in type IIA

$$F(z) = -\kappa_{ijk} \frac{z^i z^j z^k}{6z^0} + \chi_{CY} \frac{\zeta(3)(z^0)^2}{2(2\pi i)^3} - \frac{(z^0)^2}{(2\pi i)^3} \sum_{q_i \gamma^i \in H_2^+(CY)} n_{q_i}^{(0)} \operatorname{Li}_3\left(e^{2\pi i q_i z^i/z^0}\right)$$

HM moduli space

\mathcal{M}_{HM} — quaternion-Kähler manifold

 $\mathcal{M}-\mathsf{QK}$

Holonomy group

$$\operatorname{Hol}(\mathcal{M}) = \operatorname{Sp}(n) \times \operatorname{Sp}(1) \subset \operatorname{O}(4n)$$

 $\dim \mathcal{M} = 4n$

Special holonomy	v manifolds	(Berger's list)
opoolal HoloHoll	, illalilloide	(Borgor o not)

	$\operatorname{Hol}(\mathcal{M})$	$\mathrm{dim}\mathcal{M}$	type of manifold
	SO(n)	n	orientable
	$\mathrm{U}(n)$	2n	Kähler
	$\mathrm{SU}(n)$	2n	Calabi-Yau
	$\operatorname{Sp}(n) \times \operatorname{Sp}(1)$	4n	quaternion-Kähler
	$\operatorname{Sp}(n)$	4n	hyperkähler
	$ m G_2$	7	G ₂ manifold
	$\operatorname{Spin}(7)$	8	Spin(7) manifold
/	` '		

appearance in physics

 $\mathcal{N}=1$ theories compactification manifold $\mathcal{N}=2$ supergravity $\mathcal{N}=2$ gauge theories M-theory F-theory

 \mathcal{M}_{HM} • complicated type of geometry

• receives all types of g_s -corrections

The (concrete) goal: to find the non-perturbative geometry of \mathcal{M}_{HM}

Twistor approach

How to describe instanton corrections to the HM metric?

How to parametrize QK manifolds?

The idea: one should work at the level of the twistor space

Quaternionic structure quaternion algebra of almost complex structures $J^iJ^j=arepsilon^{ijk}J^k-\delta^{ij}$

Twistor space

Connection on the $\mathbb{C}\mathrm{P}^1$ bundle

$$Dt = dt + p^{+} - itp^{3} + t^{2}p^{-}$$
su(2)-part of the Levi-Civita connection

Twistor spaces carries:

- integrable complex structure
- holomorphic contact structure

$$\mathcal{X} \sim rac{Dt}{t}$$
 — nowehere vanishing holomorphic 1-form

Darboux coordinates and contact Hamiltonians

<u>Darboux coordinates for contact structure:</u>

$$\mathcal{X} \equiv \mathrm{d}\alpha + \xi^{\Lambda} \, \mathrm{d}\tilde{\xi}_{\Lambda}$$

The geometry is determined by contact transformations between sets of Darboux coordinates

$$\mathcal{X}^{[i]} \mapsto \mathcal{X}^{[j]} = \lambda \mathcal{X}^{[i]}$$

generated by holomorphic functions (contact Hamiltonians) $h^{[ij]}(\xi_{[i]}, \tilde{\xi}^{[i]}, \alpha^{[i]})$

Gluing conditions

$$\begin{pmatrix} \xi_{[j]}^{\Lambda} \\ \tilde{\xi}_{\Lambda}^{[j]} \\ \alpha^{[j]} \end{pmatrix} = e^{\{h^{[ij]}, \cdot\}} \begin{pmatrix} \xi_{[i]}^{\Lambda} \\ \tilde{\xi}_{\Lambda}^{[i]} \\ \alpha^{[i]} \end{pmatrix}$$

contact bracket

$$\{h, \xi^{\Lambda}\} = -\partial_{\tilde{\xi}_{\Lambda}} h + \xi^{\Lambda} \partial_{\alpha} h$$
$$\{h, \tilde{\xi}_{\Lambda}\} = \partial_{\xi^{\Lambda}} h$$
$$\{h, \alpha\} = h - \xi^{\Lambda} \partial_{\xi^{\Lambda}} h$$

The metric is uniquely defined by a set of *holomorphic* functions on the twistor space

From Hamiltonians towards the metric

Gluing conditions

/ Solve integral equations for Darboux coordinates

$$\xi_{[i]}^{\Lambda}(q^{\alpha},t) = A^{\Lambda} + t^{-1}Y^{\Lambda} - t\bar{Y}^{\Lambda} + \frac{1}{2}\sum_{j}\oint_{C_{j}}\frac{\mathrm{d}t'}{2\pi\mathrm{i}t'}\frac{t'+t}{t'-t}\left[\left(e^{\{h^{[ij]},\cdot\}} - 1\right)\xi_{[i]}^{\Lambda}(t')\right]$$

$$\tilde{\xi}_{\Lambda}^{[i]}(q^{\alpha},t) = \cdots$$

$$d\alpha + \xi^{\Lambda} d\tilde{\xi}_{\Lambda} = \mathcal{X} \sim \frac{Dt}{t} = \frac{dt}{t} + t^{-1}p^{+} - ip^{3} + tp^{-}$$

expanding around t=0

Find the almost complex structure J^3 (basis of (1,0)-forms π^X)

$$\begin{aligned} &\text{metric on } \mathcal{M} \\ & \textbf{\textit{g}}(v,v') = \pmb{\omega}^{\textbf{3}}(v,\pmb{J}^{\textbf{3}}v') \end{aligned}$$

Symmetries

All isometries of \mathcal{M} can be lifted to *holomorphic* isometries on twistor space. They are realized as *contact* transformations. $\varrho \cdot \mathcal{X} = \lambda_{\varrho} \mathcal{X}$

Transformation property of the contact bracket

$$\varrho \cdot \{h, f\} = \{\lambda_{\varrho}^{-1}\varrho \cdot h, \varrho \cdot f\}$$

Linear constraint ensuring that ϱ is a symmetry transformation

$$\varrho \cdot h^{[i]} = \lambda_{\varrho} h^{[j]} + \text{reg.}$$

It is sufficient to find contact Hamiltonians consistent with all symmetries

$$\xi^{0} \mapsto \frac{a\xi^{0} + b}{c\xi^{0} + d} \qquad \xi^{a} \mapsto \frac{\xi^{a}}{c\xi^{0} + d}$$

$$\tilde{\xi}_{a} \mapsto \tilde{\xi}_{a} + \frac{c}{2(c\xi^{0} + d)} \kappa_{abc} \xi^{b} \xi^{c}$$

$$\begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} \mapsto \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \begin{pmatrix} \tilde{\xi}_{0} \\ \alpha \end{pmatrix} + \text{non-linear terms}$$

contact transformation

$$\mathcal{X} \mapsto \frac{\mathcal{X}}{c\xi^0 + d}$$

Condition the isometric action of $SL(2,\mathbb{Z})$

hetric
$$h_{m,n}^{[i]} \mapsto \frac{h_{m',n'}^{[i]}}{c^{\xi 0} + d} + \text{reg.}$$

$$\binom{m'}{n'} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \binom{m}{n}$$

Instanton corrections

Type IIA

D-brane instantons

$$e^{-2\pi|Z_{\gamma}|/g_{s}-2\pi\mathrm{i}(q_{\Lambda}\zeta^{\Lambda}-p^{\Lambda}\tilde{\zeta}_{\Lambda})}$$

Type IIB

 $d_{\rm cycle}$

1 ×

3 D2

5 ×

 $\gamma = (p^{\Lambda}, q_{\Lambda})$ — D-brane charge $Z_{\gamma}(z) = q_{\Lambda}z^{\Lambda} - p^{\Lambda}F_{\Lambda}(z)$

similar to instantons in Yang-Mills

$$g_s \sim g_{\rm YM}^2$$

0 D(-1)

2 D1

4 D3

6 D5

NS5-brane instantons

$$e^{-2\pi|k|\mathcal{V}/g_s^2-i\pi k\sigma}$$

k — NS5-brane charge

 \mathcal{V} — CY volume

pure stringy effects

Instanton contributions to the HM moduli space: what we have found

Perturbative HM moduli space

Twistorial description of \mathcal{M}_{HM} at tree level

$$h^{[+]} = F(\xi)$$
 $h^{[-]} = \bar{F}(\xi)$

Solution of "integral" equations:

$$\xi^{\Lambda} = \zeta^{\Lambda} + \frac{\tau_2}{2} \left(t^{-1} z^{\Lambda} - t \, \bar{z}^{\Lambda} \right)$$

$$\tilde{\xi}_{\Lambda} = \tilde{\zeta}_{\Lambda} + \frac{\tau_2}{2} \left(t^{-1} F_{\Lambda}(z) - t \, \bar{F}_{\Lambda}(\bar{z}) \right)$$

$$\alpha = \sigma + \frac{\tau_2}{2} \left(t^{-1} W(z) - t \, \overline{W}(\overline{z}) \right) + \frac{i \chi_X}{24\pi} \log t$$

where $W(z) \equiv F_{\Lambda}(z)\zeta^{\Lambda} - z^{\Lambda}\tilde{\zeta}_{\Lambda}$ $au_2 \sim g_{\circ}^{-1}$

reproduce the known HM metric

appears as a singular boundary condition for Darboux coordinate

D-instantons in Type IIA

D2-instanton of charge $\gamma = (q_{\Lambda}, p^{\Lambda})$

Contour on $\mathbb{C}\mathrm{P}^1$: ray C_{γ} along $\theta_{\gamma} = \arg Z_{\gamma}$

Contact Hamiltonian:

$$h^{[\gamma]}(\xi,\tilde{\xi}) = \frac{\Omega(\gamma)}{(2\pi)^2} \operatorname{Li}_2\left(e^{2\pi i(q_\Lambda \xi^\Lambda - p^\Lambda \tilde{\xi}_\Lambda)}\right)$$

$$\Omega(\gamma)$$
 — generalized $ext{Li}_2(x) = \sum_{n=1}^\infty rac{x^n}{n^2}$

Integral equations for Darboux coordinates can be solved explicitly for *mutually local* charges $\langle \gamma, \gamma' \rangle = 0$, e.g. only electric charges $\gamma = (q_{\Lambda}, 0)$

Explicit QK metric — non-trivial deformation of the c-map

S.A.,Banerjee '14

Integrability of D-instantons

- Darboux coordinates are determined by *Thermodynamic Bethe Ansatz* eqs.
- Geometric potentials on the moduli space *free energy and YY-functional*
- S-matrix satisfies all axioms of integrability

Instanton corrections in Type IIB

Type IIB formulation must be manifestly invariant under S-duality group

Quantum corrections in type IIB:

- α' -corrections:
- pert. g_s -corrections:
- instanton corrections:

pert.

 1ℓ

D(-1)

w.s.inst.

D1

 $SL(2,\mathbb{Z})$ duality

D3

using S-duality

S.A., Banerjee '14

Robles-Llana, Roček, Saueressig, Theis, Vandoren '06

Twistorial description:

$$h_{m,n}^{D1}(\xi) = \frac{\mathrm{i}}{(2\pi)^3} \sum_{q_a \ge 0} n_{q_a}^{(0)} \frac{e^{-2\pi \mathrm{i} m q_a \xi^a}}{m^2 (m\xi^0 + n)}$$

$$h_{0,n}^{D1}(\xi) = \frac{i(\xi^0)^2}{(2\pi)^3} \sum_{q_a > 0} n_{q_a}^{(0)} \frac{e^{2\pi i n q_a \xi^a / \xi^0}}{n^3}$$

Gopakumar-Vafa invariants of $n_{q_a}^{(0)}$ genus zero

from mirror symmetry

In the one-instanton approximation the mirror of the type IIA construction is consistent with S-duality

requires technique of *mock modular* forms

manifestly S-duality invariant formulation is unknown

S.A., Manschot, Pioline '12

S.A., Saueressig, '09

Open problem: NS5-instantons

How NS5-brane instantons look like in type IIA?

- These are true stringy effects
 (no relation to SUSY gauge theories in contrast to D-instantons)
- Resolution of a curvature singularity (expected to be regularized by NS5-instantons)
- Resummation of divergent series over brane charges (expected to be cured by NS5-instantons)
- Relation to the topological string wave function

$$\sum_{\gamma} h_{\rm NS5}^{[\gamma]} \sim \sum_{n^{\Lambda}} e^{-\alpha + n^{\Lambda} \tilde{\xi}_{\Lambda}} \Psi_{\mathbb{R}}^{\rm top}(\xi^{\Lambda} + n^{\Lambda}) \blacktriangleleft$$

A-model topological string partition function = wave function

 Can the integrable structure of D-instantons in Type IIA be extended to include NS5-brane corrections?

NS5-branes & Integrability

NS-axion corresponds to the central element in the Hiesenberg algebra

$$\begin{bmatrix} P^{\Lambda},Q_{\Sigma} \end{bmatrix} = -2\delta_{\Sigma}^{\Lambda}K \qquad \qquad P^{\Lambda} = \partial_{\tilde{\zeta}_{\Lambda}} - \zeta^{\Lambda}\partial_{\sigma} \qquad Q_{\Lambda} = -\partial_{\zeta^{\Lambda}} - \tilde{\zeta}_{\Lambda}\partial_{\sigma} \qquad K = \partial_{\sigma} \\ k \neq 0 : \text{ Inst. cor. } \sim e^{2\pi \mathrm{i} k\sigma}\Theta_{\gamma}^{(k)}(\zeta,\tilde{\zeta}) \qquad \text{non-abelian Fourier expansion}$$

Universal hypermultiplet (S.A. '12)

Contact Hamilt. generating NS5-brane instantons

NS5-brane charge

Wall-crossing:
 there is a natural extension involving quantum dilog

("quantum torus")

quantization parameter

Conjecture

In Type IIA formulation the NS5-brane instantons are encoded by $q-Li_2$

NS5-branes & Integrability

NS-axion corresponds to the central element in the Hiesenberg algebra

$$\begin{split} \left[P^{\Lambda},Q_{\Sigma}\right] &= -2\delta_{\Sigma}^{\Lambda}K & P^{\Lambda} = \partial_{\tilde{\zeta}_{\Lambda}} - \zeta^{\Lambda}\partial_{\sigma} & Q_{\Lambda} = -\partial_{\zeta^{\Lambda}} - \tilde{\zeta}_{\Lambda}\partial_{\sigma} & K = \partial_{\sigma} \\ & k \neq 0 : \text{ Inst. cor. } \sim e^{2\pi \mathrm{i} k\sigma}\Theta_{\gamma}^{(k)}(\zeta,\tilde{\zeta}) & -\text{ non-abelian Fourier expansion} \\ & \text{ ("quantum torus")} \end{split}$$

Universal hypermultiplet (S.A. '12)

Wall-crossing: there is a natural extension involving quantum dilog

Conjecture

In Type IIA formulation the NS5-brane instantons are encoded by q-Li₂

THANK YOU!