

Heavy element nucleosynthesis in core-collapse supernovae and neutron star mergers

82

82

Almudena Arcones Helmholtz Young Investigator Group

50

50

20

8

20

28

8

28

LMHOLTZ GEMEINSCHAFT

126

r-process path

Nucleosynthesis of heavy elements

Core-collapse supernovae:

explosive: up to Fe wind: up to $~\sim$ Ag jets: r-process

Neutron star mergers: r-process weak r-process

Nucleosynthesis based on simulations

astrophysics and nuclear physics

Long-time hydrodynamic simulations nucleosynthesis relevant conditions Uncertainties from

Compare to observations and chemical evolution

Nucleosynthesis of heavy elements

Nucleosynthesis based on simulations

nucleosynthesis relevant conditions Uncertainties from astrophysics and nuclear physics

Long-time hydrodynamic simulations

Compare to observations and chemical evolution

Neutrino-driven winds

neutrons and protons form α-particles α-particles recombine into seed nuclei

Figure 2. Schematic representation of the processes that occur in a collapsing stellar iron core on the way to the $s = 10 - 8$ GK to both $s = 8 - 8$ NSE \rightarrow charged particle reactions / α-process \rightarrow r-process 8 - 2 GK weak r-process νp-process $= 10 - 8$ GK

by neutrino heating, and r-process nucleosynthesis in the neutrino-driven wind of the newly formed neutron star, ror a review see Arcories α Trilelemann (2013) for a review see Arcones & Thielemann (2013) $\hbox{${\sf T}\,<3$}$ GK

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- -Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- -Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

nditions are not realized in drodynamic simulations ones et al. 2007, Fischer et al. 2010, epohl et al. 2010, Roberts et al. 2010, pnes & Janka 2011, ...)

 $S_{wind} = 50 - 120$ kB/nuc $\tau =$ few ms $Y_e \approx 0.4 - 0.6?$

ditional aspects:

d termination, extra energy arce, rotation and magnetic fields, utrino oscillations

Nucleosynthesis in neutrino winds

Lighter heavy elements in neutrino-driven winds

Production of p-nuclei

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

(Arcones & Montes, 2011, based on simulations Arcones et al. 2007)

Lighter heavy elements in neutrino-driven winds

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Are Honda-like stars the outcome of one nucleosynthesis event or the combination of several?

Nucleosynthesis components

C.J. Hansen, Montes, Arcones 2014

L and H-components based on 3 methods:

M1: L-component $=$ Honda star (b) H-component= Sneden star (a)

M2: L-component = Honda - Sneden H-component = Sneden

```
M3: iterative method (Li et al. 2013)
L-component = L - H
H-component = H - L
```
Component abundance pattern: Y_H and Y_L Assumptions: Z range for components robust pattern within uncertainties $(0.32 \text{ dex} = 10^{0.32})$

Abundance deconvolution

Fit abundance as combination of components:

 $Y_{\text{calc}}(Z) = (C_H Y_H(Z) + C_L Y_L(Z)) \cdot 10^{\text{[Fe/H]}}$

From big sample of stars (Frebel et al. 2010) remove s-process, carbon enhanced, and stars with internal mixing

Abundance deconvolution

Fit abundance as combination of components:

 $Y_{\text{calc}}(Z) = (C_H Y_H(Z) + C_L Y_L(Z)) \cdot 10^{\text{[Fe/H]}}$

L-component: constraining conditions

L-component abundance ratios:

 $Sr/Y = 6.13$ (//) $Sr/Zr = 1.22$ (\\) $Sr/Ag = 48.2$

L-component: constraining conditions

L-component abundance ratios:

 $Sr/Y = 6.13$ (//) $Sr/Zr = 1.22$ (\\) $Sr/Ag = 48.2$

L-component: constraining conditions

L-component abundance ratios:

 $Sr/Y = 6.13$ (//) $Sr/Zr = 1.22$ (\\) $Sr/Ag = 48.2$

Key reactions: weak r-process

Bliss, Arcones, Montes, Pereira (in prep.)

Astrophysics and nuclear physics uncertainties

Error bar: variation of (α,n) by factors 10 and 0.1 for all isotopic chain

Astrophysics and nuclear physics uncertainties

Error bar: variation of (α,n) by factors 10 and 0.1 for all isotopic chain Color: variation of astrophysical conditions (Ye)

Astrophysics and nuclear physics uncertainties

Error bar: variation of (α,n) by factors 10 and 0.1 for all isotopic chain Color: variation of astrophysical conditions (Ye)

Bliss, Arcones, Montes, Pereira (in prep.)

Neutron star mergers

Ejecta from three regions:

- dynamical ejecta
- neutrino-driven wind
- disk evaporation

Neutron star mergers: robust r-process

Right conditions for a successful r-process (Lattimer & Schramm 1974, Freiburghaus et al. 1999)

nucleosynthesis of dynamical ejecta robust r-process:

- extreme neutron-rich conditions ($Y_e = 0.04$)
- several fission cycles

Korobkin, Rosswog, Arcones, Winteler (2012)

see also Bauswein, Goriely, and Janka

 Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ...

Neutron star mergers: robust r-process

 $-70 - 60 - 50 - 40$

 50°

 x | km

 Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ...

T (GK)

ρ (g cm-3)

Korobkin et al. 2012

t: 0.00e+00 s / T: 10.96 GK / ρ_b : 8.71e+12 g/cm³

Neutron star mergers: neutrino-driven wind

3D simulations after merger entitled and the reflection of the Perego et al. (2014) disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

Martin et al. (in prep)

see also

Fernandez & Metzger 2013, Metzger Fernandez 2014, Just et al. 2014, Sekiguchi et al.

Neutron star mergers: neutrino-driven wind

3D simulations after merger example the Reference of al. (2014) disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

see also

Fernandez & Metzger 2013, Metzger Fernandez 2014, Just et al. 2014, Sekiguchi et al.

Neutron star mergers: neutrino-driven wind

3D simulations after merger entitled and the reflection of the Perego et al. (2014) disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

Martin et al. (in prep)

see also

Fernandez & Metzger 2013, Metzger Fernandez 2014, Just et al. 2014, Sekiguchi et al.

Radioactive decay in neutron star mergers

NATURE | LETTER near-final version

≪ ⊠⇔

A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. **Tunnicliffe**

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, Goriely et al. 2011):

direct observation of r-process,

EM counter part to GW

Radioactive decay in neutron star mergers

NATURE | LETTER near-final version

 \mathbb{R} \blacksquare

A 'kilonova' associated with the short-duration y-ray burst GRB130603B

10

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. **Tunnicliffe**

Time since GRB 130603B (days)

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011,

Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Conclusions

8

8

Core-collapse supernovae:

explosive: up to Fe **wind: up to ~Ag** jets: r-process

Neutron star mergers: r-process **weak r-process**

Impact of nuclear physics and astrophysics: (a,n) and Y_e

Observations to constrain astrophysics

