NDM 2015 Neutrinos and Dark Matter in Nuclear Physics Jyväskylä, 1-5 June 2015

Spontaneuos Symmetry Breaking in Self-Induced Supernova Neutrino Flavor Conversions

Alessandro MIRIZZI University of BARI & Sez. INFN Bari, Italy

OUTLINE

Supernovae as neutrino sources

Self-induced SN ν oscillations: the collective behaviour of a dense ν gas

Spontaneous Symmetry Breaking effects of self-interacting neutrino gas

Open Issues and Conclusions

SUPERNOVA NEUTRINOS

Core collapse SN corresponds to the terminal phase of a massive star [$M \gtrsim 8~M_{\odot}$] which becomes unstable at the end of its life. It collapses and ejects its outer mantle in a <u>shock wave</u> driven explosion.

- ENERGY SCALES: 99% of the released energy (~ 10^{53} erg) is emitted by v and \overline{v} of all flavors, with typical energies E ~ O(15 MeV).
- TIME SCALES: Neutrino emission lasts ~10 s
- EXPECTED: 1-3 SN/century in our galaxy ($d \approx O(10)$ kpc).

(See talks by E.Endeve, T. Fischer for details on SN v emission)

3v FRAMEWORK

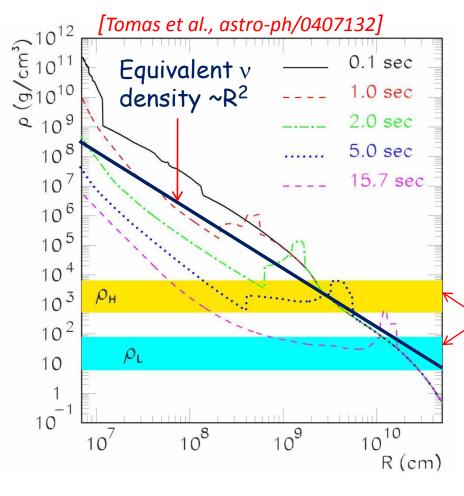
• Mixing parameters: $U = U(\theta_{12}, \theta_{13}, \theta_{23}, \delta)$ as for CKM matrix

 c_{12} = cos θ_{12} , etc., δ CP phase

• Mass-gap parameters:
$$M^2 = \left(-\frac{\delta m^2}{2}, + \frac{\delta m^2}{2}, \pm \Delta m^2 \right)$$

 v_3 $+\Delta m^2$ inverted hierarchy v_1 $+\delta m^2/2$ v_1 $+\delta m^2/2$ v_2 $-\delta m^2/2$ v_3 $-\Delta m^2$

"solar"


"atmospheric"

Alessandro Mirizzi

NDM 2015

Jyväskylä, 5th June 2015

SNAPSHOT OF SN DENSITIES

Matter bkg potential

$$\lambda = \sqrt{2}G_F N_e$$
 ~ R-3

• v-v interaction

$$\mu = \sqrt{2}G_F n_v \sim R^{-2}$$

Vacuum oscillation frequencies

$$\omega = \frac{\Delta m^2}{2E}$$

When $\mu > \lambda$, SN v oscillations dominated by v-v interactions

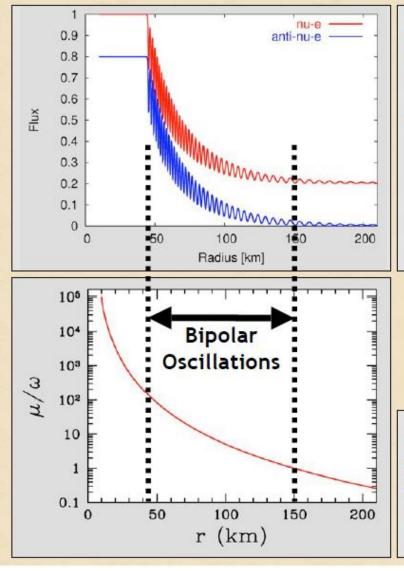
Collective flavor transitions at low-radii [O (10² - 10³ km)]

Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/0511275, Duan et al. astro-ph/0606616

(See talks by B. Balantekin, G. McLaughlin, Y. Pehivan, C. Volpe)

Neutrinos and Dark Matter in Nuclear Physics NDM06, 3-9 September 2006, Paris

Conclusions


Simultaneous v and \overline{v} flavor conversion possible by bipolar collective oscillation mode at few 10 to few 100 km above neutrino sphere

Depending on primary neutrino flux spectra, may

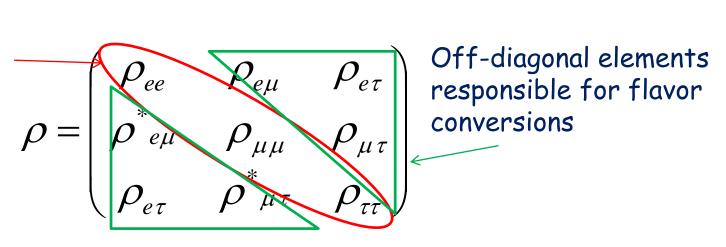
- Modify energy transfer to shock wave
- Modify neutrino-driven nucleosynthesis
- Modify observable signatures of SN neutrino oscillations

Collective Oscillations of Supernova Neutrinos

Toy Supernova in "Single-Angle" Approximation

- Assume 80% anti-neutrinos
- Vacuum oscillation frequency
 ω = 0.3 km⁻¹
- Neutrino-neutrino interaction energy at nu sphere (r = 10 km) μ = 0.3×10⁵ km⁻¹
- Falls off approximately as r⁻⁴
 (geometric flux dilution and nus become more co-linear)

Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/0608695)


Collective Supernova Nu Oscillations since 2006

Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/0511275, Duan et al. astro-ph/0606616

Balantekin, Gava & Volpe [0710.3112]. Balantekin & Pehlivan [astro-ph/0607527]. Blennow, Mirizzi & Serpico [0810.2297]. Cherry, Fuller, Carlson, Duan & Qian [1006.2175, 1108.4064]. Cherry, Wu, Fuller, Carlson, Duan & Qian [1109.5195]. Cherry, Carlson, Friedland, Fuller & Vlasenko [1203.1607]. Chakraborty, Choubey, Dasgupta & Kar [0805.3131]. Chakraborty, Fischer, Mirizzi, Saviano, Tomàs [1104.4031, 1105.1130]. Choubey, Dasgupta, Dighe & Mirizzi [1008.0308]. Dasgupta & Dighe [0712.3798]. Dasgupta, Dighe & Mirizzi [0802.1481]. Dasgupta, Dighe, Raffelt & Smirnov [0904.3542]. Dasgupta, Dighe, Mirizzi & Raffelt [0801.1660, 0805.3300]. Dasgupta, Mirizzi, Tamborra & Tomàs [1002.2943]. Dasgupta, Raffelt & Tamborra [1001.5396]. Dasgupta, O'Connor & Ott [1106.1167]. Duan, Fuller, Carlson & Qian [astroph/0608050, 0703776, 0707.0290, 0710.1271]. Duan, Fuller & Qian [0706.4293, 0801.1363, 0808.2046, 1001.2799]. Duan, Fuller & Carlson [0803.3650]. Duan & Kneller [0904.0974]. Duan & Friedland [1006.2359]. Duan, Friedland, McLaughlin & Surman [1012.0532]. Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl [0807.0659]. Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl [0706.2498, 0712.1137]. Fogli, Lisi, Marrone & Mirizzi [0707.1998]. Fogli, Lisi, Marrone & Tamborra [0812.3031]. Friedland [1001.0996]. Gava & Jean-Louis [0907.3947]. Gava & Volpe [0807.3418]. Galais, Kneller & Volpe [1102.1471]. Galais & Volpe [1103.5302]. Gava, Kneller, Volpe & McLaughlin [0902.0317]. Hannestad, Raffelt, Sigl & Wong [astro-ph/0608695]. Wei Liao [0904.0075, 0904.2855]. Lunardini, Müller & Janka [0712.3000]. Mirizzi, Pozzorini, Raffelt & Serpico [0907.3674]. Mirizzi & Serpico [1111.4483]. Mirizzi & Tomàs [1012.1339]. Pehlivan, Balantekin, Kajino & Yoshida [1105.1182]. Pejcha, Dasgupta & Thompson [1106.5718]. Raffelt [0810.1407, 1103.2891]. Raffelt & Sigl [hep-ph/0701182]. Raffelt & Smirnov [0705.1830, 0709.4641]. Raffelt & Tamborra [1006.0002]. Sawyer [hep-ph/0408265, 0503013, 0803.4319, 1011.4585]. Sarikas, Raffelt, Hüdepohl & Janka [1109.3601]. Sarikas, Tamborra, Raffelt, Hüdepohl & Janka [1204.0971]. Saviano, Chakraborty, Fischer, Mirizzi [1203.1484]. Wu & Qian [1105.2068]......

DENSITY MATRIX FOR THE NEUTRINO ENSEMBLE

Diagonal elements related to flavor content

$$\rho_{\alpha\alpha} = \frac{F_{\nu_{\alpha}}(E,r)}{F(E,r)}$$

In 2v scenario. Decompose density matrix over Pauli matrices to get the "polarization" (Bloch) vector P. Survival probability Pee =1/2(1+P,) . P, = -1 -> Pee =0; $P_z = 0 \rightarrow Pee = 1/2$ (flavor decoherence)

EQUATIONS OF MOTION FOR A DENSE NEUTRINO GAS

(Sigl & Raffelt, 1992)

$$\begin{split} \partial_t \varrho_{\mathbf{p},\mathbf{x}} + \mathbf{v}_{\mathbf{p}} \cdot \nabla_{\mathbf{x}} \varrho_{\mathbf{p},\mathbf{x}} + \dot{\mathbf{p}} \cdot \nabla_{\mathbf{p}} \varrho_{\mathbf{p},\mathbf{x}} &\longleftarrow \text{Liouville operator} \\ &= -i [\Omega_{\mathbf{p},\mathbf{x}}, \varrho_{\mathbf{p},\mathbf{x}}] \quad , \\ &\longleftarrow \text{Hamiltonian} \quad \Omega_{p,x} = \Omega_{vac} + \Omega_{matt} + \Omega_{vv} \end{split}$$

 $\partial_t \varrho_{\mathbf{p},\mathbf{x}} \longrightarrow \mathsf{Explicit} \mathsf{time} \mathsf{evolution}$

 $\mathbf{v_p} \cdot \nabla_{\mathbf{x}} \varrho_{\mathbf{p},\mathbf{x}} \longrightarrow \text{ Drift term due to space inhomogeneities}$

$$\dot{\mathbf{p}}\cdot\nabla_{\mathbf{p}}\varrho_{\mathbf{p},\mathbf{x}}$$
 — Force term acting on neutrinos (negligible)

7-dimensional problem. Never solved in its complete form. Symmetries have been used to reduce the complexity of the problem.

SPACE/TIME HOMOGENEITIY

Space Homogeneity:

$$\partial_t \rho_{p,x} + v_p \cdot \nabla_x \rho_{p,x} = -i[\Omega_{p,x}, \rho_{p,x}]$$

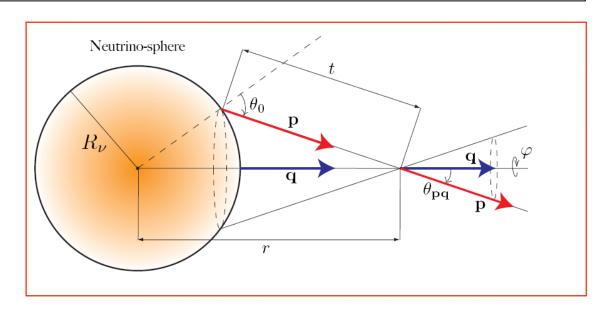
Pure temporal evolution (Neutrinos in Early Universe)

Time Homogeneity:

$$\partial_t \rho_{p,x} + v_p \cdot \nabla_x \rho_{p,x} = -i[\Omega_{p,x}, \rho_{p,x}]$$

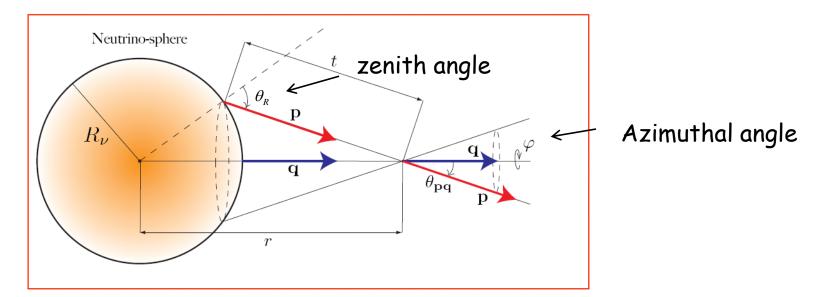
Stationary space evolution (SN neutrinos)

MULTI-ANGLE (M.A.) EOMS FOR SN NEUTRINOS


Evolution in space for v's streaming from a SN core in quasi-stationary situation

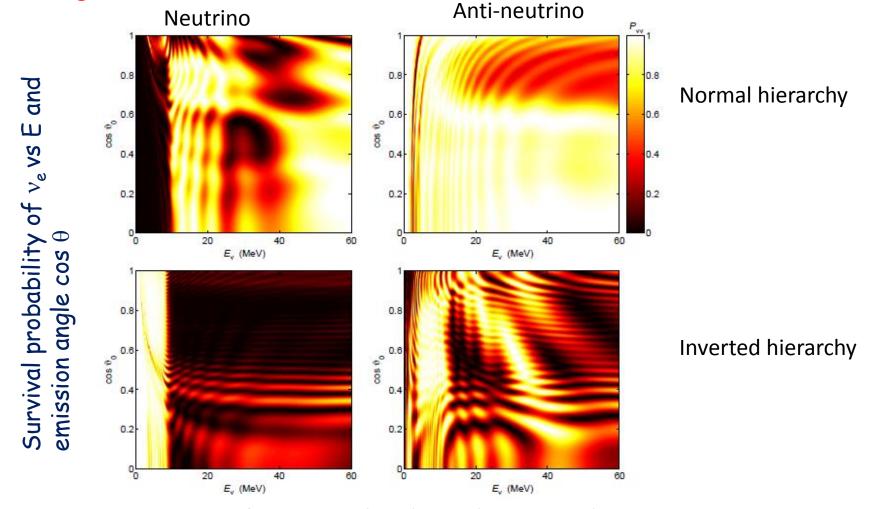
$$i \vec{\mathbf{v}}_{p} \cdot \vec{\nabla}_{x} \rho_{p,x} = \left[H(\omega, \lambda, \rho_{p',x}), \rho_{p,x} \right]$$

Liouville operator for free streaming v


MULTI-ANGLE V-V HAMILTONIAN

$$H_{vv} = \sqrt{2}G_F \int d\vec{q} \left(1 - \vec{\mathbf{v}}_{p} \cdot \vec{\mathbf{v}}_{q}\right) \left(\rho_{q,x} - \overline{\rho}_{q,x}\right)$$

BULB MODEL

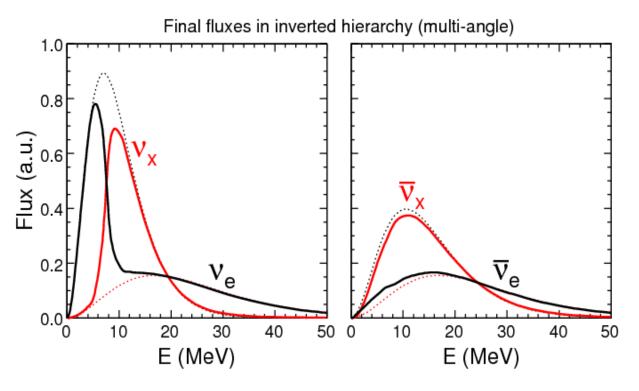

[see, e.g., Duan et al., astro-ph/0606616] \longrightarrow First large-scale multi-angle simulations

- Neutrinos are emitted uniformly and (half)-isotropically from the surface of a sphere (v-sphere), like in a blackbody.
- Physical conditions depend only on the the distance r from the center of the star (azimuthal symmetry)
- Only multi-zenith-angle (MZA) effects in terms of $u = \sin^2 \theta_R$
- ullet Project evolution along radial direction (ODE problem) $ec{ ext{V}}_p \cdot ec{ ext{V}}_x
 ightarrow ext{V}_{ ext{r}} d_r$

MULTI-ANGLE LARGE SCALE SIMULATIONS

First multi-angle simulations in 2006 by Duan, Fuller, Qian (2006). Major breakthrough!

Significant angular dependence on the Pee


Convergence required > 10^3 angular bins \longrightarrow Large scale numerical simulations

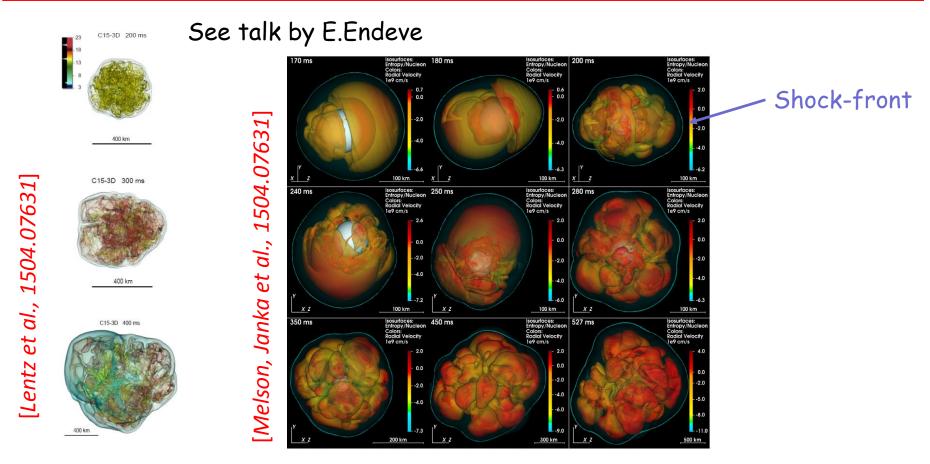
MULTI-ANGLE SIMULATIONS BY DIFFERENT GROUPS

- Duan, Fuller, Carlson & Qian, astro-ph/0606616, 0608050
- Fogli, Lisi, Marrone & <u>A.M.</u>, 0707.1998, Fogli, Lisi, Marrone, <u>A.M</u> & Tamborra, 0808.0807;
- Esteban-Pretel, Pastor, Tomas, Raffelt & Sigl, 0706.2498
- Duan & Friedland, 1006.2359
- A.M. & Tomas, 1012.1339
- Cherry, Fuller, Carlson, Duan, Qian, 1006.2175

SELF-INDUCED SPECTRAL SPLITS

[Fogli, Lisi, Marrone, A.M., arXiV: 0707.1998 [hep-ph], Duan, Carlson, Fuller, Qian, astro-ph/0703776, Raffelt and Smirnov, 0705.1830 [hep-ph], Dasgupta, Dighe, Raffelt & Smirnov, arXiv:0904.3542 [hep-ph], Duan & Friedland, arXiv: 1006.2359, A.M. & Tomas, arXiv:1012.1339, Choubey, Dasgupta, Dighe, A.M., 1008.0308....]

Swap of the original SN v spectra in inverted mass hierarchy


Strong dependence of collective oscillations on mass hierarchy and on the energy ("splits")

Splits possible in both normal and inverted hierarchy, for $v \& \overline{v}!!$ Alessandro Mirizzi

NDM 2015

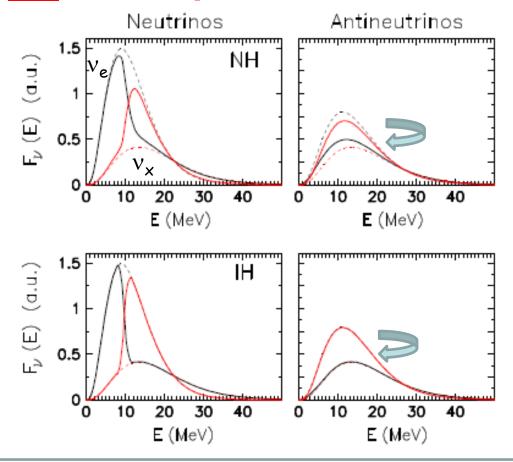
Jyväskylä, 5th June 2015

FIRST EXPLODING 3D SIMULATIONS

- 3D SN simulations show strong anisotropies and asphericities in the matter profile and in the neutrino emission.
- Real SN environment very far from the idealized bulb model.
- How deviations from the bulb model would affect the self-induced effects?

MULTI-AZIMUTHAL-ANGLE (MAA) INSTABILITY

- Self-induced flavor conversions are associated to an instability in the flavor space [Sawyer,0803.4319; Banerjee, Dighe & Raffelt, 1107.2308]
- Instability required to get started (exponential growth of the offdiagonal density matrix part)
- The onset of the conversions can be found through a stability analysis of the linearized EoMs.


In [Raffelt, Sarikas, Seixas, 1305.7140] a stability analysis of the EoMs has been performed including the azimuthal angle ϕ of the ν propagation and without enforcing axial symmetry.

- Also starting with an intial axial symmetric ν emission....
 -A new multi-azimuthal-angle (MAA) instability has been found!!
- In the unstable case, numerical simulations are mandatory.

Alessandro Mirizzi NDM 2015 Jyväskylä, 5th June 2015

SPECTRAL SPLITS FOR SN NEUTRINO FLUXES

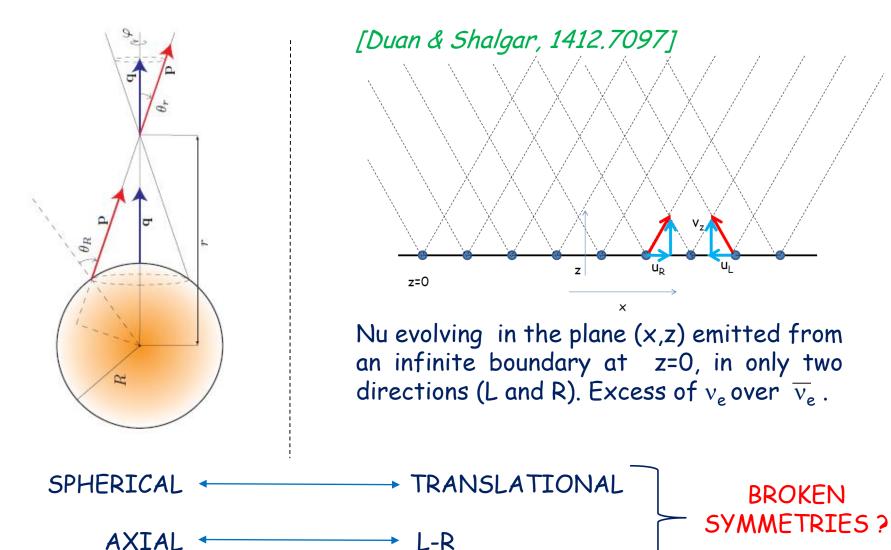
[Chakraborty & A.M., 1308.5255]

- Spectral swaps and splits in both NH & IH!!
- In the axial symmetric case, only IH unstable

Alessandro Mirizzi

SPONTANEOUS SYMMETRY BREAKING IN SELF-INDUCED OSCILLATIONS

- ullet Symmetries have been used to reduce the complexity of the SN $_{\rm V}$ flavor evolution.
- However, the discovery of the MAA instability suggests self-interacting
 v can lead to a spontaneous symmetry breaking (SSB) of the symmetry
 inherent to the initial conditions.
- Small deviations from the space/time symmetries of the bulb model have to be expected. Can these act as seed for new instabilities?


FIRST INVESTIGATIONS WITH TOY MODELS

- With a simple toy model in [Mangano, <u>A.M.</u> & Saviano, 1403.1892] it has been shown that self-interacting ν can break translational symmetries in space and time.
- By a stability analysis in [Duan & Shalgar, 1412.7097] is has been found that self-interacting v can break the spatial symmetries of a 2D model.

Alessandro Mirizzi NDM 2015 Jyväskylä, 5th June 2015

2D MODEL FOR SELF-INTERACTING V

FROM BULB MODEL -> PLANAR MODEL

SSB IN 2D MODEL

Perturbing with seeds the L-R and the translational symmetries

Both NH and IH are unstable. In L-R symmetric case only IH unstable.

(Analogous of MAA instability of bulb model)

[Raffelt & de Sousa Seixas, 1307.7625]

NH

1D problem along z direction

2D Flavor evolution in (x,z) plane [Duan & Shalgar, 1412.7097]

Alessandro Mirizzi

NDM 2015

Jyväskylä, 5th June 2015

EOM FOR THE 2D MODEL

$$\hat{\mathbf{v}}_{L} \cdot \nabla_{\mathbf{x}} \mathsf{P}_{L}(x, z) = [+\omega \mathsf{B} + \mu \mathsf{D}_{R}(x, z)] \times \mathsf{P}_{L}(x, z)
\hat{\mathbf{v}}_{L} \cdot \nabla_{\mathbf{x}} \overline{\mathsf{P}}_{L}(x, z) = [-\omega \mathsf{B} + \mu \mathsf{D}_{R}(x, z)] \times \overline{\mathsf{P}}_{L}(x, z)$$

(analogous for the R mode. $L \longleftrightarrow R$ symmetry)

$$\rho_p = \frac{1}{2}(1 + P \cdot \sigma)$$
 Two-flavor polarization vectors

$$\omega = \frac{\Delta m^2}{2F}$$
 Vacuum oscillation frequency

 $B \cdot \hat{e}_3 = -\cos \theta$ Mass eigenstate direction in flavor space

$$\mu=\sqrt{2}G_F[F^0_{ar{
u}_a}-F^0_{ar{
u}_a}](1-\hat{\mathbf{v}}_L\cdot\hat{\mathbf{v}}_R)$$
 v–v potential

$$D_{R} = P_{R} - \overline{P}_{R}$$

SOLVING THE PROBLEM IN FOURIER SPACE

[Mangano, A.M. & Saviano, 1403.1892; A.M., Mangano & Saviano, 1503.03485]

The partial differential equation can be transformed into a tower of ordinary differential equations for the Fourier modes

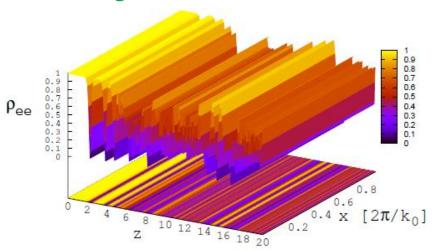
$$\mathsf{P}_{L(R),k}(z) = \int_{-\infty}^{+\infty} dx \; \mathsf{P}_{L(R)}(x,z)e^{-ikx}$$

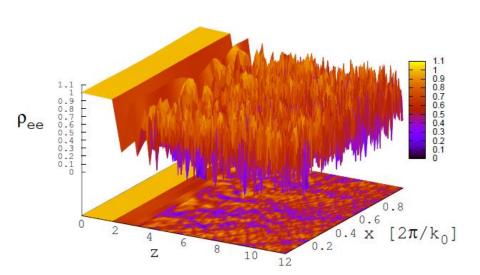
We assume a monochromatic perturbation (with wave-number $k_0=2\pi/\lambda_0$) in the translational symm. along x at z=0

$$P_{L,R}^3(x,0) = \langle P_{L,R}^3(x,0) \rangle + \epsilon \cos(k_0 x)$$
 with $\mathcal{E} << 1$

$$v_{z} \frac{d}{dz} \mathsf{P}_{L,n}(z) = -iu_{L} k_{n} \mathsf{P}_{L,n} + \omega \mathsf{B} \times \mathsf{P}_{L,n}$$

$$+ \mu \sum_{j=-\infty}^{+\infty} \mathsf{D}_{R,n-j} \times \mathsf{P}_{L,j} . \qquad k_{n} = nk_{0}$$


$$k_n = nk_0$$


Solution in real space by inverse Fourier transform

$$P(x,z) = \int_{-\infty}^{+\infty} dk P_k(z) e^{ikx}$$

2D FLAVOR EVOLUTION IN THE PLANE

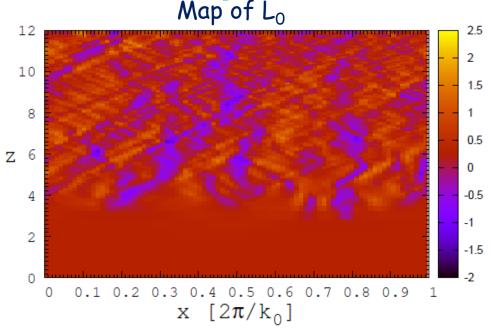
[A.M., Mangano & Saviano, 1503.03485]

LAR TRANSLATIONAL

Evolution uniform in the x direction.

Coherent behavior along x direction.

LR TRANSLATIONAL $k_0 = 0.2\sqrt{2\omega\mu}$


Large variations in the x direction at smaller and smaller scales.

Planes of common phase broken.

Coherent behavior of oscillation lost.

LEPTON NUMBER

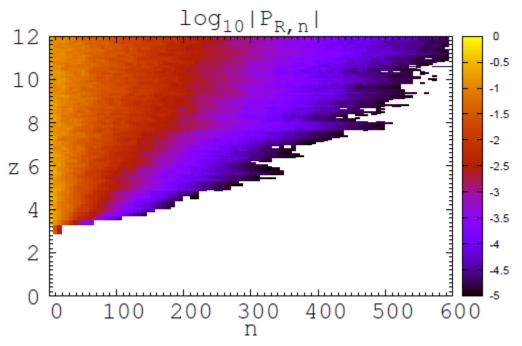
[A.M., Mangano & Saviano, 1503.03485]

Lepton current $L^{\mu} = (L_0, L)$

$$L_0 = D_L \cdot B + D_R \cdot B ,$$

$$\mathbf{L} = \hat{\mathbf{v}}_L(\mathsf{D}_L \cdot \mathsf{B}) + \hat{\mathbf{v}}_R(\mathsf{D}_R \cdot \mathsf{B})$$

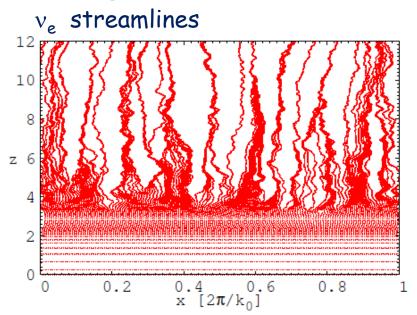
Continuity equation


$$\partial_t \mathbf{L}_0 + \nabla_{\mathbf{x}} \cdot \mathbf{L} = \nabla_{\mathbf{x}} \cdot \mathbf{L} = 0$$

 L_0 shows a non-trivial domain structure with different net lepton number flux

GROWTH OF FOURIER MODES

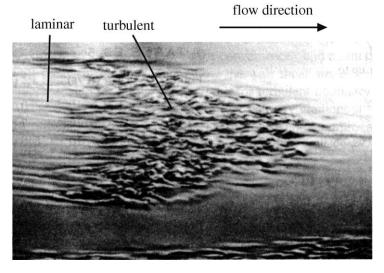
[A.M., Mangano & Saviano, 1503.03485]



Growth of n>0 modes in Fourier space. Cascade process. Flavor wave diffuses to higher harmonics (smaller scales)

ANALOGY WITH A TURBULENT FLUID

[A.M., Mangano & Saviano, 1503.03485]


v_e average velocity

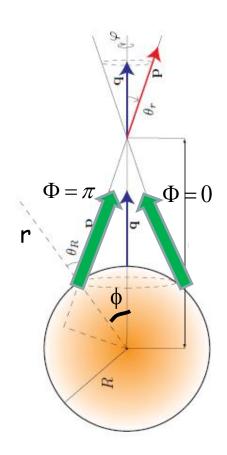
$$\langle \hat{\mathbf{v}}_e \rangle_{\mathbf{x}} = \frac{\varrho_{ee,L} \hat{\mathbf{v}}_L + \varrho_{ee,R} \hat{\mathbf{v}}_R}{\varrho_{ee,L} + \varrho_{ee,R}}$$

 \bullet streamlines of the v_e flux

$$\frac{d\mathbf{x}}{ds} = \frac{\langle \hat{\mathbf{v}}_e \rangle_{\mathbf{x}}}{|\langle \hat{\mathbf{v}}_e \rangle_{\mathbf{x}}|} = \hat{\mathbf{F}}_{e,\mathbf{x}}$$

fluid streamlines

Analogy:


transition btw the coherent \rightarrow incoherent behavior of the v oscillations

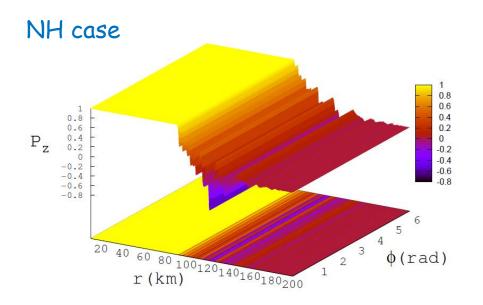
transition btw the laminar \rightarrow turbulent behaviour of a fluid.

(Non-linear Navier-Stokes equations)

2D TOY SUPERNOVA

[A.M. in preparation]

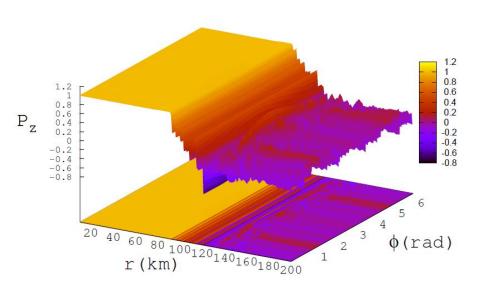
Neutrinos emitted in a plane from a ring with two azimuthal angles $\Phi=0,\pi$ and with zenith angles $u=\sin^2\theta_R$ in [0;1]


$$v \cdot \nabla_x P(r, \phi) = v_r \frac{\partial}{\partial r} P(r, \phi) + \frac{v_\phi}{r} \frac{\partial}{\partial \phi} P(r, \phi)$$

$$\begin{array}{ll} v_r \; = \; \cos\Theta_r = \sqrt{1 - \frac{R^2}{r^2} \sin^2\vartheta_R} \\ \\ v_\phi \; = \; \sin\Theta_r \cos\Phi = \frac{R}{r} \sin\vartheta_R \cos\Phi \end{array}$$

One can apply to this problem the same technique based on FT.

2D FLAVOR EVOLUTION IN A TOY SN


[A.M. in preparation]

MAA instability in NH

Evolution uniform in the r direction.

Alessandro Mirizzi NDM 2015

Significant variations in the ϕ direction.

Planes of common phase broken.

Coherent behavior of oscillation lost.

Jyväskylä, 5th June 2015

OPEN ISSUES AND CONCLUSIONS

- Self-interacting neutrinos spontaneously break spatial symmetries (axial symmetry, translational symmetry,...)
- Self-induced flavor evolution of SN neutrinos obtained in the spherically symmetric bulb model should be critically reconsidered!
- Going beyond the bulb model would add additional layers of complications to this vexed problem
- Studies with simple toy models just begun

Ten years after the first studies on self-induced effects in SNe we are still far from a complete description of this flavor dynamics.....

LOT OF FUN/WORK WAITING FOR THE NEXT GALACTIC SN EXPLOSION!

