The ADMX-HF Experiment

Timothy Shokair for the ADMX-HF Collaboration

University of California, Berkeley
Neutrinos and Dark Matter

2 June 2015
Outline

• Motivation for the axion as dark matter
• Microwave cavity axion searches
• The Axion Dark Matter Experiment at High-Frequencies.
• Innovations underway.
The Strong CP Problem

<table>
<thead>
<tr>
<th>The Strong-CP Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}_{\text{QCD}} = \ldots + \frac{\theta}{32\pi^2} G\bar{G}$</td>
</tr>
<tr>
<td>- Explicitly CP-violating</td>
</tr>
<tr>
<td>But neutron e.d.m.</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>- $\bar{\theta} < 10^{-10}$</td>
</tr>
<tr>
<td>- Strong-CP preserving</td>
</tr>
<tr>
<td>$\text{CP} \left(\begin{array}{c} \mu_n \ \text{ln} \end{array} \right) = \begin{array}{c} \text{d}_n \ \text{d}_n \ -\mu_n \end{array} \neq \text{ln}$</td>
</tr>
<tr>
<td>Why?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peccei-Quinn / Weinberg-Wilczek</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ a dynamical variable</td>
</tr>
<tr>
<td>$T = f_\alpha$ spontaneous symmetry breaking</td>
</tr>
<tr>
<td>$\theta_1 (x)$</td>
</tr>
<tr>
<td>$T \lesssim 1 \text{ GeV}$</td>
</tr>
<tr>
<td>$V (\bar{\theta})$</td>
</tr>
<tr>
<td>- $\bar{\theta}$ dynamically $\to 0$</td>
</tr>
<tr>
<td>- Remnant oscillation = Axion</td>
</tr>
</tbody>
</table>
The axion predicted by the Peccie-Quinn Mechanism, a light cousin of the π^0, couples to two photons. This coupling is of particular interest in microwave cavity searches.
The Axion and Dark Matter

Given constraints from Sn1987a and from the cosmology, and axion in the microeV range is a good candidate for dark matter.
Sikivie outlined a technique that would use the Primakoff effect to couple virtual photons from a magnetic field with axions to produce an outgoing photon.

\[
P_{\text{sig}} \propto (B^2 V Q_{\text{cav}}) (g^2 m_a \rho_a)
\]

\[
P_{\text{sig}} \approx 10^{-23} \text{W}
\]

\[
\frac{s}{n} = \frac{P_{\text{sig}}}{kT_{\text{sys}}} \sqrt{\frac{t}{\Delta \nu}}
\]
Axion Experiments

Expected axion model regions
ADMX

• Large Scale Experiment running 1995-present.
• Excluded KSVZ axions with mass 1.9-3.6 μeV (460-860 MHz).
• Uses DC SQUID amplifiers.
• Currently commissioning dilution refrigerator upgrade.
• Present search region is 3.6-10 μeV.
ADMX-HF

- Smaller Experiment in the few GHz range.
- Pathfinder: first look at data in this range.
ADMX-HF

• Probes the 5-25 GHz (20-100 μeV) axion mass region.
• Uses a 25 mK dilution refrigerator.
• Uses a highly uniform 9 T magnet.
• Uses Josephson Parametric Amplifiers (JPAs)
ADMX-HF Cavity Tuning

![Graph showing frequency response of a cavity](image)

Tunable Cavity
Data Analysis
ADMX-HF Current Status

- Commissioning since last Summer
 - Cold Cavity Tuning
ADMX-HF Current Status

• Commissioning since last Summer
 – Cold Cavity Tuning
 – JPA Tuning
 – Magnetic ramp up to 9T
Innovations Underway

• Superconducting cavities to increase Q.
• Development of lower noise, squeezed state amplifiers.
• Work on piezoelectric tuning to decrease system noise.
• New cavity designs that push the cavity frequencies into the 10’s of GHz range.
Superconducting Cavities

$$Q_{\text{hybrid}} = (1+L/R) \cdot Q_{\text{Cu}}$$

Typical enhancement for an ADMX cavity is 6.
Superconducting Cavities

- R&D UCB to produce cavities coated with Type II thin film superconductors.
- We’ve just installed an RF plasma deposition system to coat cavities, and have installed infrastructure to test the Q’s of these cavities above and below the transition temperature.
Squeezed-Vacuum State Amplifiers

Work of K. Lehnart of University of Colorado
High Frequency Cavity Designs
Timeline

• Construction: 2011-14
• Commissioning: 2014-15
• Long data run: Summer 2015
• Current: R&D
Conclusion

• Axions are highly motivated as a solution to the Strong CP.
• Axions are a very compelling dark matter candidate.
• ADMX and ADMX-HF are capable of searching for dark matter axions in 250 MHz to 10 GHz region.
Thank You!

Lawrence Livermore National Laboratory – ADMX began here in the mid-1990s.
 Gianpaolo Carosi, Darrell Carter, Jaime Ruz Armendariz
University of Washington – main experiment moved here in 2010.
 Leslie Rosenberg, Gray Rybka, Michael Hotz, Andrew Wagner, Doug Will,
 Dmitry Lyapustin, Christian Boutan, Jim Sloan
University of Florida
 David Tanner, Pierre Sikivie, Neil Sullivan, Jeff Hoskins, Jungseek Hwang,
 Catlin Martin, Ian Stern, Nicole Crisosto
National Radio Astronomy Observatory
 Richard Bradley
University of California, Berkeley
 Karl van Bibber, John Clarke, Sean O’Kelly, Jaben Root, Tim Shokair, Austin Lo, Kelly Backes, Bella
Urdinaran, Maria Simanovskaia, Samantha Lewis
Sheffield University
 Edward Daw
Yale University (ADMX-HF - NSF sponsored)
 Steve Lamoreaux, Yulia Gurevich, Ben Brubaker, Sidney Cahn, Ling Zhong
University of Colorado (ADMX-HF – NSF sponsored)
 Konrad Lenhert, Dan Palkin

This work was supported under the auspices of the National Science Foundation, under grants PHY-1067242, and PHY-1306729, and the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and the Heising-Simons Foundation.